STORMWATER TECHNICAL STANDARDS MANUAL CITY OF GREENWOOD, INDIANA July 14, 2015 Revised March 9, 2016 # **Table of Contents** | Chapter | Title | |---------|--| | 1 | INTRODUCTION AND ADMINISTRATION | | 2 | REQUIREMENTS FOR DRAINAGE EASEMENTS AND PLAN REVIEW | | | STORMWATER QUANTITY MANAGEMENT | | 3 | METHODOLOGY FOR DETERMINATION OF RUNOFF RATES | | 4 | METHODOLOGY FOR DETERMINATION OF DETENTION STORAGE VOLUMES | | 5 | STORM SEWER DESIGN STANDARDS AND SPECIFICATIONS | | 6 | OPEN CHANNEL DESIGN STANDARDS AND SPECIFICATIONS | | 7 | STORMWATER DETENTION DESIGN STANDARDS FOR PEAK FLOW CONTROL | | | STORMWATER QUALITY MANAGEMENT | | 8 | CONSTRUCTION SITES STORMWATER POLLUTION PREVENTION STANDARDS | | 9 | POST CONSTRUCTION STORMWATER QUALITY MANAGEMENT STANDARDS | - 10 METHODOLOGY FOR DETERMINATION OF REQUIRED SIZING OF BMPS - 11 MISCELLANEOUS REQUIREMENTS - 12 **PERMITTING** **APPENDIX A: ABBREVIATIONS AND DEFINITIONS** **APPENDIX B: STANDARD FORMS** **APPENDIX C: CONSTRUCTION BMP FACT SHEETS** **APPENDIX D: POST-CONSTRUCTION BMP APPENDICES** # **Chapter One** ### INTRODUCTION AND ADMINISTRATION ### A. Organization of the City of Greenwood and its Department of Stormwater Management The City of Greenwood is an Indiana municipal corporation located in Johnson County, Indiana. The City has approximately 53,000 residents and is a member of the Johnson County Partnership for Water Quality. The Department of Stormwater Management, overseen by the Board of Directors of the Department of Stormwater Management, is responsible for the implementation of the Municipal Separate Storm Sewer System ("MS4") Program mandated by the Indiana Department of Environmental Management for the City's Stormwater Management District, which covers approximately twenty-five (25) square miles and is drained by eight Receiving Streams located in five Watersheds. The offices of the Department of Stormwater Management are located in the Greenwood City Center, 300 S. Madison Avenue, Greenwood, Indiana. The Department is housed with the Department of Community Development Services on the second floor of the City Center, and persons wishing to conduct business with either Department may do so Monday thru Friday from 8:00 a.m. until 5:00 p.m. The Department may be contacted by telephone at (317) 887-4711 or fax at (317) 887-5616. The Board of Public Works and Safety is responsible for overseeing all aspects of the Ordinance and this Technical Manual related to Stormwater quantity management. The Board of Public Works and Safety holds regularly scheduled public meetings on the first and third Mondays of the month and may schedule special meetings if necessary. In accordance with the Americans with Disabilities Act, if anyone wishes to attend a public meeting of the Board of Public Works and Safety and is in need of reasonable accommodation in order to attend, hear, or present evidence at the public meeting, please contact the Department of Community Development Services so accommodations may be made. The Board of Directors of the Department of Stormwater Management ("Board of Stormwater Management") is responsible for overseeing all aspects of the Ordinance and this Technical Manual related to Stormwater Quality management. The Board of Stormwater Management holds regularly scheduled public meetings on the second Wednesday of the month and may schedule special meetings if necessary. In accordance with the Americans with Disabilities Act, if anyone wishes to attend a public meeting of the Board of Stormwater Management and is in need of reasonable accommodation in order to attend, hear, or present evidence at the public meeting, please contact the Department of Stormwater Management so accommodations may be made. ### B. Stormwater Technical Standards Manual This document, the City of Greenwood Stormwater Technical Standards Manual, prepared in conjunction with Christopher B. Burke Engineering, LLC (CBBEL), contains the necessary technical standards for administering the requirements of 327 IAC 15-13 and the City of Greenwood Stormwater Management Ordinance ("Ordinance"), Greenwood Municipal Code Chapter 9, Article 4. This document should be considered as a companion document to the Ordinance. Whereas the Ordinance contains the majority of the regulatory authority and general requirements of comprehensive Stormwater management, this document contains the necessary means and methods for achieving compliance with the Ordinance. This document is intended as a regulatory document and is designed to provide guidance to assist plan reviewers, Developers, and designers. In case there are conflicts between the requirements contained in this document and the Ordinance, the requirements of the Ordinance shall prevail. This document is effective upon adoption by the City's Board of Directors of the Department of Stormwater Management and the Board of Public Works and Safety and may be amended from time to time. This document contains formulas and methodologies for the review and design of both Stormwater quantity and Stormwater Quality facilities. Chapter 2 contains requirements for Drainage Easements and an outline of the plan review process. Chapters 3 through 7 contain Stormwater Conveyance and Detention calculations and requirements. Chapter 8 contains information on Erosion Control requirements and other pollution prevention measures for active construction Sites. Chapters 9 through 10 cover calculations required to properly size and design Stormwater Quality features that will treat Runoff long-term following construction completion. This includes both Conventional and Low Impact Development (LID) approaches. Chapter 11 contains miscellaneous standards regarding Grading and Building pad elevations, acceptable Outlet and adjoining property impact requirements, no net loss Floodplain storage requirements, and the requirements associated with proposed dams or levees. Chapter 12 addresses various permitting requirements. A comprehensive glossary of terms is provided in Appendix A. Appendix B contains several useful and necessary standard forms. Management Practices (BMPs) for Erosion control measures during the construction phase are contained in Appendix C. It is the intent of the City that material presented in Appendix C will be revised or eliminated once the Indiana Storm Water Quality Manual (ISWQM) is updated to include details regarding the BMPs currently included in Appendix C. Appendix D contains non-structural and structural post-construction BMP Fact Sheets as well as Recommended Plant Lists, Recommended Materials, Soil Infiltration Testing Protocol, BMP Maintenance Checklists, and Maintenance Agreement for post-construction BMPs. The Site designer is encouraged to review the LID discussion in Chapter 9 prior to the Site design to take advantage of Runoff reduction recognitions provided towards water quantity calculations if LID practices are utilized as part of the Site design. # **Chapter Two** # DRAINAGE EASEMENT REQUIREMENTS AND PLAN REVIEW Greenwood Municipal Code ("GMC") Chapter Nine, Article Four, Section 9-155 requires that all Stormwater systems, including Detention or Retention Basins, Conveyance systems, Structures and appurtenances located outside of the Right-of-Way be placed in Drainage Easements and properly recorded in the chain of title for the applicable property or properties. This Chapter provides the technical requirements for implementation of GMC Sec. 9-155. ### A. DRAINAGE EASEMENT REQUIREMENTS All parcels/plots shall contain a dedication of a Drainage easement to the City. [GMC Sec. 9-155(a)]. Specifications for required easements are as follows: ### 1. Subdivisions a. All new Channels, storm Sewers, Drain tiles equal to or greater than twelve (12) inches in diameter, 6-inch or larger subsurface Drains in rear yard Swales, Inlet and Outlet Structures of Detention and Retention ponds, and appurtenances thereto shall be placed in Drainage Easements (DEs) according to the following criteria and shall be designated on the record plat as DEs: | Depth of Storm
Pipe from Finish
Grade to Crown | Diameter of
Storm Pipe | Minimum
Easement
Width | |--|---------------------------|------------------------------| | 3 Feet or Less | 15 Inches or Less | 15 feet | | Greater than 3 Feet | 15 Inches or Less | 20 feet | | 3 Feet or Less | Greater than 15 Inches | 20 feet | | Greater than 3 Feet | Greater than 15 Inches | 25 feet | Easement width requirements may be modified by the City based on individual Site conditions pursuant to the variance/waiver procedures outlined in GMC Sec. 9-162. **b.** A minimum of twenty-five (25) feet from top of the bank on each side of a new Channel shall be designated on the record plat as a DE. Rear-yard Swales shall have a minimum width of DE of ten (10) feet either side of the center. - c. 100-year emergency overflow paths and emergency overflow routes associated with Detention ponds shall be provided with a DE having a minimum width of thirty (30) feet width (15 feet from centerline on each side). Additional width of Drainage easements may be required by the City where conditions warrant. - d. A minimum of twenty (20) feet beyond the actual footprint (top of the bank) of Stormwater Detention facilities shall be designated as a DE. A minimum 25-foot wide DE shall also be required as access easement, unless the pond is immediately next to a public Right-of-Way. ### 2. Non-Subdivisions For all properties/parcels located outside of a Subdivision, DEs of twenty-five (25) feet from each side of the storm Sewer centerline must be dedicated to the City of Greenwood. ### 3. Restrictions on Drainage Easements - a. There shall be no trees or shrubs planted, nor any Structures or fences erected in any Drainage easement without appropriate approval from the City. [GMC Sec. 9-155(b)(1)]. -
b. No driveways shall be allowed in Drainage Easements except for the purpose of crossing a front yard Drainage easement to provide access to the property. [GMC Sec. 9-155(b)(2)]. - **c.** Drainage Easements shall have senior right over other utilities. They also shall not be used as vehicular access easements. - **d.** Any crossing and/or encroachment of a Drainage Easement requires application and acceptance from the City as provided in GMC Sec. 9-161(e). ### 4. Dedication of Easements When the Board of Public Works and Safety accepts the Stormwater improvements into its system, the following statement shall become part of the Restrictive Covenants of every platted Subdivision and shown on recorded plat: "Storm Sewers and Tile Drains 12-inch or larger within designated drain easements are extensions of the City of Greenwood Stormwater Drainage System and are the responsibility of the City. Drainage Swales, Detention and Retention ponds, and post-construction Stormwater Quality Measures shall be the responsibility of the owner or Homeowners Association. If no Homeowners Association exists or a Homeowners Association dissolves, owners of each lot shall be equally responsible for maintenance. In the event the property owner(s) or the Association fails to exercise its obligation, the City of Greenwood may perform the required maintenance and shall have the right to assess each lot in the Subdivision a proportionate amount of the associated costs. If necessary, a Notice of Lien shall be filed against the affected lots. The lien shall be enforced in the same manner as a mortgage lien under Indiana law and, therefore, shall include reimbursement of attorney's fees, title expenses, interest, and costs of collection." ### B. PLAN APPROVAL REQUIREMENTS AND PROCEDURES ### 1. Conceptual Drainage plan review [GMC Sec. 9-155(d)(1)] Prior to applying for Stormwater Management Permit or Erosion and Sediment Control Permit approval and in order to gain an understanding of the Drainage requirements for a specific project, a Developer may submit conceptual Drainage plans and calculations for review by the City. The direction provided by the City during such a review is based on preliminary data and shall not be construed as an acceptance or binding on either party. The following is a general listing of minimum data requirements for the review of conceptual Drainage plans: - a. Two (2) complete sets of conceptual plans showing general project layout, including existing and proposed Drainage systems (plan sheets must be larger than 11" by 17", but not to exceed 24" by 36"). - **b.** General description of the existing and proposed Drainage systems in narrative form. - **c.** Watershed Boundaries with USGS Contours or best information possible. - **d.** Existing Watercourse or regulated Drains. ## 2. Drainage Plans – Properties Required To Obtain Stormwater Management Permit Pursuant to GMC Sec. 9-155(d)(2), all properties required to obtain a Stormwater Management Permit must have a Drainage Plan. This section applies to all Development, or Redevelopment of land, that results in land disturbance of one (1) acre or more. Individual lots with land disturbance less than one (1) acre shall refer to Section 4. **Figure 2-1** is a flowchart summarizing the plan review/approval process and can be found at the end of this section. All projects located within the corporate boundaries of the City of Greenwood lie within the City's MS4 area boundary by default. The Project Site Owner shall submit an application for a Stormwater Management Permit approval to the City. A copy of the Application Checklist is provided in Appendix B. The application will include an Initial Notice of Intent letter (NOI), proof of public notice, Construction Plan sheets, a Stormwater Drainage technical report, a Stormwater Pollution Prevention Plan(SWPPP), and any other necessary support information. Specific information to be included in the application can be found in Section 3 below. Four (4) copies of each application must be submitted to the City. The City may, at its discretion, require one or more copies be submitted to the Johnson County Surveyor, or other entity deemed appropriate by the City. Additionally, a digital copy of the Construction Plans is required in a format accepted by the City. After the City's receipt of the application, the applicant will be notified within fifteen (15) working days following submittal as to whether their application was complete or insufficient. The applicant will be asked for additional information if the application is insufficient. If the application is complete, it will be reviewed in detail by the City and/or its plan review consultant(s). Once all comments have been received and review completed, the City will approve the project, request modifications, or deny the project. If the applicant does not agree with or accept the review findings and wishes to seek an appeal, the City will place the project on the agenda of the next regularly scheduled meeting of the appropriate City body, provided the agenda for the meeting has not yet been advertised or published. If time for notification does not allow, the project shall be placed on the following regularly scheduled meeting of the appropriate City body. If the project must go through a scheduled meeting, the City will furnish the applicant a complete list of comments and objections to the plans and accompanying data prior to the scheduled meeting. After the scheduled meeting, the City will issue an approval, request modifications to the Construction Plans, or deny the project, and said decision shall represent the final decision of the City with respect to the application. The Project Site Owner must notify the City and IDEM forty-eight (48) hours before beginning construction. Notification shall be in the form of an updated IDEM NOI form. Once a permit has been issued and the updated NOI submitted to the City and IDEM forty-eight (48) hours before the beginning of construction, construction may commence. Once construction starts, the project owner shall monitor construction activities and inspect all Stormwater pollution prevention measures in compliance with the Ordinance and these Technical Standards and the terms and conditions of the approval. Upon completion of construction activities, as-built plans must be submitted to the City. [GMC Sec. 9-161 (i)(1)]. A Notice of Termination (NOT) shall be sent to the City once the construction Site has been stabilized and all temporary Erosion and Sediment Control Measures have been removed. The City, or its representative, shall inspect the construction Site to verify that the requirements for an NOT have been met. Once the applicant receives a "verified" copy of the NOT, they must forward a copy to IDEM. Approvals issued under this scenario will expire five (5) years from the date of issuance. construction is not completed within five (5) years, the NOI must be resubmitted at least 90 days prior to expiration. ## 3. Information Requirements – Properties Required To Obtain Stormwater Management Permit Specific projects or activities may be exempt from all or part of the informational requirements listed below. Exemptions are detailed in GMC Secs. 9-150(e), 9-156(a), 9-157(b), 9-158(b), and 9-159(b). If a project or activity is exempt from any or all requirements of the Ordinance or these Technical Standards, a claim for exemption, as provided in GMC Sec. 9-161(b), should be filed listing the exemption criteria met, in lieu of the information requirements listed below. This level of detailed information is not required from individual lots, disturbing less than one (1) acre of land, developed within a larger permitted Project Site. Review and acceptance of such lots is covered under the Erosion and Sediment Control Permit procedure. The different elements of a permit submittal include a Draft Notice of Intent (NOI), proof of publication of a public notice, Construction Plans, a Stormwater Drainage technical report, a Stormwater Pollution Prevention Plan for active construction Sites, a post-construction Stormwater pollution prevention plan, and any other necessary supporting information. All plans, reports, calculations, and narratives shall be signed and sealed by a Professional Engineer or a licensed surveyor, registered in the State of Indiana. ### a. Draft Notice of Intent The NOI is a standard form developed by the Indiana Department of Environmental Management, which requires general project information. As part of the City of Greenwood Stormwater Management Permit application package, the NOI form should be completed in full based on data and information available at the time of application. An updated version of this form, accompanied by proof of publication in a newspaper of general circulation in the affected area that notified the public that a Construction Activity is to commence, will need to be resubmitted later after the Stormwater Management Permit approval is granted and at least forty-eight (48) hours prior to commencement of construction. The publication must include the following language: "(Company name, address) is submitting an NOI letter to notify the City of Greenwood, Indiana and the Indiana Department of Environmental Management of our intent to comply with the requirements of the City of Greenwood Stormwater Management Ordinance, as well as the requirements of 327 IAC 15-5 and 327 IAC 15-13, to discharge Stormwater from construction activities for the following project: (name of the construction project, address of the location of the construction project, and Parcel Identification Number). Run-off from the Project Site will discharge to (Stream(s) receiving the discharge(s))." ### **b.** Construction Plans Construction Plan sheets (larger than 11" by 17", but not to exceed 24" by 36" in size) and an accompanying narrative report shall describe and depict the existing and proposed
conditions. Note that in order to gain an understanding of and to evaluate the relationship between the proposed improvements for a specific project section/phase and the proposed improvements for an overall multisection (phased) project, the detailed information requested herein for the first section/phase being permitted must be accompanied by an overall project plan that includes the location, dimensions, and supporting analyses of all Detention/Retention facilities, primary Conveyance facilities, and Outlet conditions. Construction Plans shall include items listed in the application checklist provided in Appendix B. ### c. Stormwater Drainage Technical Report A written Stormwater Drainage technical report must contain a discussion of the steps taken in the design of the Stormwater Drainage system. Note that in order to gain an understanding of and to evaluate the relationship between the proposed improvements for a specific project section/phase and the proposed improvements for an overall multi-section (phased) project, the detailed information requested herein for the first section/phase being permitted must be accompanied by an overall project plan that includes the location, dimensions, and supporting analyses of all Detention/Retention facilities, primary Conveyance facilities, and Outlet conditions. The technical report shall include items listed in the application checklist provided in Appendix B. ### d. Stormwater Pollution Prevention Plan for Construction Sites For Sites with total disturbance of one (1) acre or more, a Stormwater Pollution Prevention Plan associated with construction activities must be designed to, at least, meet the requirements of the Ordinance and these Technical Standards. The SWPPP and Construction Plans must include the items listed in the application checklist provided in Appendix B. For land disturbances totaling 10,000 square feet or more of land area but less than one (1) acre, appropriate Erosion and Sediment Control Measures that are consistent with these Standards must be designed and shown on the plans. # e. Post-Construction Storm Water Pollution Prevention Plan For Sites with total land disturbance of 10,000 square feet or more of total land area, a post-construction Stormwater Pollution Prevention Plan must be designed to, at least, meet the requirements of the Ordinance and these Technical Standards. The postconstruction storm water pollution prevention plan must include items listed in the application checklist provided in Appendix B. ### 4. Drainage Plans – Properties Required To Obtain Erosion and Sediment Control Permit For all individual lots disturbing 10,000 square feet or more of total land area, a formal review and issuance of an Erosion and Sediment Control Permit will be required before a building permit can be issued. [GMC Sec. 9-161(d)]. Similarly, for individual lots disturbing less than 10,000 square feet of total land area, developed within a larger permitted project, a formal review and issuance of an Erosion and Sediment Control Permit will be required before a building permit can be issued. Erosion and Sediment Control Permit forms for both residential and commercial lots are provided in Appendix B. All Stormwater management measures necessary to comply with the Ordinance and these Technical Standards must be implemented in accordance with a permitted plan for the larger project. The following information must be submitted to the City, for review and acceptance, by the Individual Lot Operator, whether owning the property or acting as the agent of the property owner, as part of a request for review and issuance of an Erosion and Sediment Control Permit that must be obtained prior to the issuance of a building permit. **a.** A Site layout for the subject lot and all adjacent lots showing Building pad location, dimensions, and elevations, and the Drainage patterns and Swales. FIGURE 2-1 Plan Approval Process - **b.** Erosion and Sediment control plan that, at a minimum, includes the following measures: - i. Installation and maintenance of a stable Construction Site Access. - ii. Installation and maintenance of appropriate perimeter Erosion and Sediment Control Measures prior to land disturbance. - iii. Minimization of Sediment Discharge and tracking from the Project Site. - iv. Clean-up of Sediment that is either tracked or washed onto roads. Bulk clearing of Sediment shall not include flushing the area with water. Cleared Sediment must be redistributed or disposed of in a manner that is in compliance with all applicable statutes and rules. - v. Implementation of concrete washout practices that securely contain and allow for the proper Disposal of washout waste. - vi. Adjacent lots disturbed by an Individual Lot Operator must be repaired and stabilized with temporary or permanent surface stabilization. - vii. Self-monitoring program including plan and procedures. - **c.** Certification of Compliance stating that the individual lot plan is consistent with the City's Stormwater Management approval for the larger project (if the individual lot is part of a larger permitted project). - **d.** Name, address, telephone number, and list of qualifications of the Trained Individual in charge of the mandatory Stormwater pollution prevention self-monitoring program for the Project Site. The Individual Lot Operator is responsible for installation and maintenance of all Erosion and Sediment Control Measures until the Site is stabilized. # **Chapter Three** # METHODOLOGY FOR DETERMINATION OF RUNOFF RATES GMC Sec. 9-156 requires the implementation of Stormwater quantity measures. In order to properly determine the Stormwater quantity control measures necessary for a given Site, runoff rates shall be computed for the area of the parcel under Development plus the area of the Watershed flowing into the parcel under Development. The rate of Runoff which is generated as the result of a given Rainfall Intensity may be calculated as follows: A. Development Sites Less than or Equal to Five (5) Acres in Size, With a Contributing Drainage Area Less than or Equal to Twenty-Five (25) Acres and No Depressional Storage The Rational Method may be used. A computer model, such as TR-55 (NRCS), TR-20 (NRCS), HEC-HMS (COE), and HEC-1 (COE), that can generate Hydrographs based on the NRCS TR-55 Time of Concentration and Curve Number calculation methodologies may also be used along with a 24-hour Duration NRCS Type 2 storm. Note that for the purpose of determining the post-developed conditions Curve Numbers, due to significant disturbance to the upper Soil layers during the construction activities, the initially determined hydrologic Soil group for disturbed areas should be changed to the next less infiltrating Capacity category (i.e., A to B, B to C, and C to D). **LID Exception:** If Low Impact Development (LID) approach is pursued in satisfying the requirements noted in Chapter 9 (Post-Construction Stormwater Quality Management Standards), the post-developed CN for the protected undisturbed or restored disturbed areas meeting the requirements described in Chapter 9 and BMP fact sheets may be determined based on predevelopment underlying Soil layer. In the Rational Method, the peak rate of Runoff, Q, in Cubic Feet Per Second (cfs) is computed as: Q = CIA Where: C = Runoff Coefficient, representing the characteristics of the Drainage Area and defined as the ratio of Runoff to rainfall. - I = Average intensity of rainfall in inches per hour for a Duration equal to the Time of Concentration (t_c) for a selected rainfall frequency. - A = Tributary Drainage Area in acres. Values for the Runoff Coefficient "C" are provided in **Tables 3-1** and **3-2**, which show values for different types of surfaces and local Soil characteristics. The composite "C" value used for a given Drainage Area with various surface types shall be the weighted average value for the total area calculated from a breakdown of individual areas having different surface types. **Table 3-3** provides Runoff Coefficients and Inlet times for different land use classifications. Rainfall Intensity shall be determined from the rainfall frequency data shown in **Table 3-4**. In general, the Time of Concentration (t_c) methodology to be used for all Stormwater management projects within the City shall be as outlined in the U.S. Department of Agriculture (USDA) - NRCS TR-55 Manual. In urban or developed areas, the methodology to be used shall be the sum of the Inlet time and flow time in the Stormwater Facility from the most remote part of the Drainage Area to the point under consideration. The flow time in the storm Sewers may be estimated by the distance in feet divided by velocity of flow in feet per second. The velocity shall be determined by the Manning's Equation (see Chapter 5). Inlet time is the combined time required for the Runoff to reach the Inlet of the storm Sewer. It includes Overland Flow time and flow time through established surface Drainage Channels such as Swales, Ditches, and sheet flow across such areas as lawns, fields, and other graded surfaces. | Urba | Urban Runoff Coefficients | | | | | | |-------------------------------|---------------------------|--|---------|----------|--|--| | Type of Surface | (by | Runoff Coefficient "C"
(by Storm Recurrence Interval) | | | | | | | < 25 year | 25 year | 50 year | 100 year | | | | ♦ Hard Surfaces | | | | | | | | Asphalt | 0.82 | 0.90 | 1.00 | 1.00 | | | | Concrete | 0.85 | 0.94 | 1.00 | 1.00 | | | | Roof | 0.85 | 0.94 | 1.00 | 1.00 | | | | ♦ Lawns (Sandy) | | | | | | | | Flat (0-2% Slope) | 0.07 | 0.08 | 0.09 | 0.12 | | | | Rolling (2-7% Slope) | 0.12 | 0.13 | 0.16 | 0.20 | | | | Steep (Greater than 7% Slope) | 0.17 | 0.19 | 0.22 | 0.28 | | | | ♦ Lawns (Clay) | | | | | | | | Flat (0-2% Slope) | 0.16 | 0.18 | 0.21 | 0.26 | | | | Rolling (2-7% Slope) | 0.21 | 0.23 | 0.28 | 0.35 | |
| | Steep (Greater than 7% Slope) | 0.30 | 0.33 | 0.40 | 0.50 | | | Source: HERPICC Stormwater Drainage Manual, July 1995. **TABLE 3-2** | Rural Runoff Coefficients | | | | | | |---------------------------|------------------------|-----------|----------------------------|---------|----------| | | Type of Surface | (by | Runoff Coef
Storm Recur | | al) | | | | < 25 year | 25 year | 50 year | 100 year | | ♦ Woo | dland (Sandy) | | | | | | | Flat (0-2% Slope) | 0.10 | 0.11 | 0.13 | 0.17 | | | Rolling (2-7% Slope) | 0.25 | 0.28 | 0.33 | 0.41 | | Slope) | Steep (Greater than 7% | 0.30 | 0.33 | 0.40 | 0.50 | | ♦ Woo | dland (Clay) | | | | | | | Flat (0-2% Slope) | 0.30 | 0.33 | 0.40 | 0.50 | | | Rolling (2-7% Slope) | 0.35 | 0.39 | 0.46 | 0.58 | | Slope) | Steep (Greater than 7% | 0.50 | 0.55 | 0.66 | 0.83 | | ♦ Pastu | ure (Sandy) | | | | | | | Flat (0-2% Slope) | 0.10 | 0.11 | 0.13 | 0.17 | | | Rolling (2-7% Slope) | 0.16 | 0.18 | 0.21 | 0.26 | | Slope) | Steep (Greater than 7% | 0.22 | 0.24 | 0.29 | 0.36 | | ♦ Pastı | ure (Clay) | | | | | | | Flat (0-2% Slope) | 0.30 | 0.33 | 0.40 | 0.50 | | | Rolling (2-7% Slope) | 0.36 | 0.40 | 0.48 | 0.59 | | Slope) | Steep (Greater than 7% | 0.42 | 0.46 | 0.55 | 0.69 | | ◆ Culti | ivated (Sandy) | | | | | | | Flat (0-2% Slope) | 0.30 | 0.33 | 0.40 | 0.50 | | | Rolling (2-7% Slope) | 0.40 | 0.44 | 0.53 | 0.66 | | Slope) | Steep (Greater than 7% | 0.52 | 0.57 | 0.69 | 0.86 | | ◆ Culti | ivated (Clay) | | | | | | | Flat (0-2% Slope) | 0.50 | 0.55 | 0.66 | 0.83 | | | Rolling (2-7% Slope) | 0.60 | 0.66 | 0.79 | 0.99 | | Slope) | Steep (Greater than 7% | 0.72 | 0.79 | 0.95 | 1.00 | Source: HERPICC Stormwater Drainage Manual, July 1995. **TABLE 3-3** | R | Runoff Coefficients by Land Use, Typical Inlet Times, and Storm Recurrence Interval | | | | | | | | | | | | | |------------------------------|---|--|------------|-------------|--------------|------------|------------|-------------|--------------|------------|------------|-------------|--------------------------------| | | | Runoff Coefficients "C" (by Storm Recurrence Interval) | | | | | | | | | | | | | Land Use | | Fl
(1 | | | | Roll | ling
2) | | | | eep
3) | | Inlet Time
(Minutes)
(4) | | | < 25
year | 25
year | 50
year | 100
year | < 25
year | 25
year | 50
year | 100
year | < 25
year | 25
year | 50
year | 100
year | (7) | | Commercial (CBD) | 0.75 | 0.83 | 0.99 | 1.00 | 0.83 | 0.91 | 1.00 | 1.00 | 0.91 | 1.00 | 1.00 | 1.00 | 5 | | Commercial (Neighborhood) | 0.54 | 0.59 | 0.71 | 0.89 | 0.60 | 0.66 | 0.79 | 0.99 | 0.66 | 0.73 | 0.87 | 1.00 | | | Industrial | 0.63 | 0.69 | 0.83 | 1.00 | 0.70 | 0.77 | 0.92 | 1.00 | 0.77 | 0.85 | 1.00 | 1.00 | 5 - 10 | | Garden Apartments | 0.54 | 0.59 | 0.71 | 0.89 | 0.60 | 0.66 | 0.79 | 0.99 | 0.66 | 0.73 | 0.87 | 1.00 | | | Churches | 0.54 | 0.59 | 0.71 | 0.89 | 0.60 | 0.66 | 0.79 | 0.99 | 0.66 | 0.73 | 0.87 | 1.00 | | | Schools | 0.31 | 0.34 | 0.41 | 0.51 | 0.35 | 0.39 | 0.46 | 0.58 | 0.39 | 0.43 | 0.51 | 0.64 | | | Semi Detached
Residential | 0.45 | 0.50 | 0.59 | 0.74 | 0.50 | 0.55 | 0.66 | 0.83 | 0.55 | 0.61 | 0.73 | 0.91 | | | Detached
Residential | 0.40 | 0.44 | 0.53 | 0.66 | 0.45 | 0.50 | 0.59 | 0.74 | 0.50 | 0.55 | 0.66 | 0.83 | 10 - 15 | | Quarter Acre Lots | 0.36 | 0.40 | 0.48 | 0.59 | 0.40 | 0.44 | 0.53 | 0.66 | 0.44 | 0.48 | 0.58 | 0.73 | | | Half Acre Lots | 0.31 | 0.34 | 0.41 | 0.51 | 0.35 | 0.39 | 0.46 | 0.58 | 0.39 | 0.43 | 0.51 | 0.64 | | | Parkland | 0.18 | 0.20 | 0.24 | 0.30 | 0.20 | 0.22 | 0.26 | 0.33 | 0.22 | 0.24 | 0.29 | 0.36 | To be
Computed | Source: HERPICC Stormwater Drainage Manual, July 1995. # B. Development Sites Greater Than Five (5) Acres in Size or Contributing Drainage Area Greater than Twenty-Five (25) Acres or With Significant Depressional Storage The Runoff rate for these Development Sites and contributing Drainage Areas shall be determined by a computer model that can generate Hydrographs based on the NRCS TR-55 Time of Concentration and Curve Number calculation methodologies. Note that for the purpose of determining the post-developed conditions Curve Numbers, due to significant disturbance to the upper Soil layers during the construction activities, the initially determined hydrologic Soil group for disturbed areas should be changed to the next less infiltrating Capacity category (i.e., A to B, B to C, and C to D). **LID Exception:** If Low Impact Development (LID) approach is pursued in satisfying the requirements noted in Chapter 9 (Post-Construction Stormwater Quality Management Standards), the post-developed CN for the protected undisturbed or restored disturbed areas meeting the requirements described in Chapter 9 and BMP fact sheets may be determined based on predevelopment underlying Soil layer. The 24-hour NRCS Type 2 Rainfall Distribution shall be utilized for Runoff calculations. 24-hour Rainfall depth for various frequencies shall be taken from **Table 3-5**. The NRCS Type 2 distribution ordinates are found in **Table 3-6**. Examples of computer models that can generate such Hydrographs include TR-55 (NRCS), TR-20 (NRCS), HEC-HMS (COE), and HEC-1 (COE). These programs may be downloaded free of charge from the associated agencies' websites. Other models may be acceptable and must be accepted by the Department of Community Development Services prior to their utilization. **TABLE 3-4** | Ra | Rainfall Intensities for Various Return Periods and Storm Durations | | | | | | | |----------|---|-------|-----------------|--------------|-------|-------|--| | | | Inte | nsity (Inches/H | lour) | | | | | Duration | | | Return Per | riod (Years) | | | | | | 2 | 5 | 10 | 25 | 50 | 100 | | | 5 min | 5.36 | 6.42 | 7.27 | 8.35 | 9.22 | 10.1 | | | 10 min | 4.18 | 4.99 | 5.61 | 6.39 | 6.98 | 7.57 | | | 15 min | 3.41 | 4.08 | 4.6 | 5.26 | 5.76 | 6.27 | | | 30 min | 2.28 | 2.8 | 3.19 | 3.72 | 4.12 | 4.53 | | | 60 min | 1.4 | 1.76 | 2.03 | 2.41 | 2.71 | 3.03 | | | 120 min | 0.818 | 1.03 | 1.2 | 1.43 | 1.63 | 1.83 | | | 3 hr | 0.577 | 0.727 | 0.848 | 1.02 | 1.16 | 1.32 | | | 6 hr | 0.343 | 0.433 | 0.507 | 0.612 | 0.701 | 0.796 | | | 12 hr | 0.203 | 0.253 | 0.293 | 0.35 | 0.396 | 0.445 | | | 24 hr | 0.121 | 0.148 | 0.169 | 0.198 | 0.22 | 0.243 | | Source: NOAA, National Weather Service, "Precipitation-Frequency Atlas of the United States", NOAA Atlas 14, Volume 2, Version 2, 2004, for Greenwood, Indiana. (partial Duration series, values for intermediate Durations can be logarithmically interpolated.) **TABLE 3-5** | | Rainfall Depths for Various Return Periods | | | | | | | | |----------|--|-----------------------|------|------|------|------|------|--| | | | Depth (Inches) | | | | | | | | Duration | | Return Period (Years) | | | | | | | | | 1 | 2 | 5 | 10 | 25 | 50 | 100 | | | 24 Hrs. | 2.42 | 2.9 | 3.55 | 4.06 | 4.74 | 5.28 | 5.83 | | Source: NOAA, National Weather Service, "Precipitation-Frequency Atlas of the United States", NOAA Atlas 14, Volume 2, Version 2, 2004, for Greenwood, Indiana (partial Duration series). **TABLE 3-6** | NRCS Type II Rainfall Distribution Ordinates | | | | | | | |--|-------------|------------|-------------|------------|-------------|--| | Cumulative | Cumulative | Cumulative | Cumulative | Cumulative | Cumulative | | | Storm Time | Percent of | Storm Time | Percent of | Storm Time | Percent of | | | (hr) | Storm Depth | (hr) | Storm Depth | (hr) | Storm Depth | | | 0.00 | 0 | 8.25 | 12.6 | 16.50 | 89.3 | | | 0.25 | 0.2 | 8.50 | 13.3 | 16.75 | 89.8 | | | 0.50 | 0.5 | 8.75 | 14 | 17.00 | 90.3 | | | 0.75 | 0.8 | 9.00 | 14.7 | 17.25 | 90.8 | | | 1.00 | 1.1 | 9.25 | 15.5 | 17.50 | 91.3 | | | 1.25 | 1.4 | 9.50 | 16.3 | 17.75 | 91.8 | | | 1.50 | 1.7 | 9.75 | 17.2 | 18.00 | 92.2 | | | 1.75 | 2 | 10.00 | 18.1 | 18.25 | 92.6 | | | 2.00 | 2.3 | 10.25 | 19.1 | 18.50 | 93 | | | 2.25 | 2.6 | 10.50 | 20.3 | 18.75 | 93.4 | | | 2.50 | 2.9 | 10.75 | 21.8 | 19.00 | 93.8 | | | 2.75 | 3.2 | 11.00 | 23.6 | 19.25 | 94.2 | | | 3.00 | 3.5 | 11.25 | 25.7 | 19.50 | 94.6 | | | 3.25 | 3.8 | 11.50 | 28.3 | 19.75 | 95 | | | 3.50 | 4.1 | 11.75 | 38.7 | 20.00 | 95.3 | | | 3.75 | 4.4 | 12.00 | 66.3 | 20.25 | 95.6 | | | 4.00 | 4.8 | 12.25 | 70.7 | 20.50 | 95.9 | | | 4.25 | 5.2 | 12.50 | 73.5 | 20.75 | 96.2 | | | 4.50 | 5.6 | 12.75 | 75.8 | 21.00 | 96.5 | | | 4.75 | 6 | 13.00 | 77.6 | 21.25 | 96.8 | | | 5.00 | 6.4 | 13.25 | 79.1 | 21.50 | 97.1 | | | 5.25 | 6.8 | 13.50 | 80.4 | 21.75 | 97.4 | | | 5.50 | 7.2 | 13.75 | 81.5 | 22.00 | 97.7 | | | 5.75 | 7.6 | 14.00 | 82.5 | 22.25 | 98 | | | 6.00 | 8 | 14.25 | 83.4 | 22.50 | 98.3 | | | 6.25 | 8.5 | 14.50 | 84.2 | 22.75 | 98.6 | | | 6.50 | 9 | 14.75 | 84.9 | 23.00 | 98.9 | | | 6.75 | 9.5 | 15.00 | 85.6 | 23.25 | 99.2 | | | 7.00 | 10 | 15.25 | 86.3 | 23.50 | 99.5 | | | 7.25 | 10.5 | 15.50 | 86.9 | 23.75 | 99.8 | | | 7.50 | 11 | 15.75 | 87.5 | 24.00 | 100 | | | 7.75 | 11.5 | 16.00 | 88.1 | | | | | 8.00 | 12 | 16.25 | 88.7 | | | | Source: National Resources Conservation Service (NRCS), "TR-20 Computer Program for Project Formulation Hydrology", page F9, May 1982. NOTE: For use only when SCS Type II rainfall distribution is not a default option in the computer program. ### C. Development Sites with Drainage Areas Greater than or Equal to One Square Mile For the design of any major Drainage system, as defined in **Appendix A**, the Discharge must be obtained from, or be accepted by, the IDNR. Other portions of the Site must use the Discharge methodology in the applicable section of this Chapter. # **Chapter Four** ### METHODOLOGY FOR DETERMINATION OF DETENTION STORAGE VOLUMES GMC Sec. 9-156 provides requirements for Stormwater Detention. The required volume of Stormwater storage for all
Development Sites shall be computed using a computer model that can generate Hydrographs based on the NRCS TR-55 Time of Concentration and Curve Number calculation methodologies. Examples of computer models that can generate such Hydrographs include TR-55 (NRCS), TR-20 (NRCS), HEC-HMS (COE), and HEC-1 (COE). Other models may be acceptable and shall be accepted by the Department of Community Development Services prior to their utilization. ### A. Post-Development Hydrologic Parameters Note that for the purpose of determining the post-developed conditions Curve Numbers, due to significant disturbance to the upper Soil layers during the construction activities, the initially determined hydrologic Soil group for disturbed areas should be changed to the next less infiltrating Capacity category (i.e., A to B, B to C, and C to D). **LID Exception:** If Low Impact Development (LID) approach is pursued in satisfying the requirements noted in Chapter 9 (Post-Construction Stormwater Quality Management Standards), the post-developed CN for the protected undisturbed or restored disturbed areas meeting the requirements described in Chapter 9 and BMP fact sheets may be determined based on pre-Development underlying Soil layer. ### B. Design Storm & Allowable Release Rates for Development Sites with On-Site Detention Facilities The 24-hour NRCS Type 2 Rainfall Distribution shall be utilized to determine the required storage volume. The allowable Release Rates shall be determined based on methodologies provided in Chapter 7 of these Technical Standards. # C. Design Storm & Allowable Release Rates for Development Sites within a Designated Drainage Area Serviced by a Regional Detention Facility Development Sites within Designated Drainage Areas making use of regional Detention ponds are typically not required to provide On-Site Detention; as a result, the requirements of Chapter 7 of these Stormwater Technical Standards do <u>not</u> apply to Development Sites in such areas where no On-Site Detention is planned. Where a regional Detention Facility is servicing or is planned to service a sub-Watershed Area, and that sub-Watershed has been declared a Designated Drainage Area to raise the necessary Infrastructure Development Fees in lieu of providing On-Site Detention, the following method shall be used to determine the size of storage space that would have been required On-Site. The 24-hour NRCS Type 2 Rainfall Distribution shall be utilized to determine the required storage volume. The Stormwater model should not include an On-Site Detention Facility. The outflow Hydrograph at the downstream-most point in the Site's Stormwater system shall be compared to the allowable Release Rate for the Designated Drainage Area to determine the required storage volume. The allowable Release Rate for a Designated Drainage Area shall be as defined by the resolution forming the Designated Drainage Area. The storage volume shall be determined by calculating the volume of outflow from the Site that exceeds the given allowable Release Rate. For example, if a 50-acre Site is located in a Designated Drainage Area that has an allowable post-Development 100-year Release Rate of 0.2 cfs/acre, the required storage volume for the Site would be equal to the volume of water represented by the cross-hatched area in **Figure 4-1**. FIGURE 4-1 Required Storage Volume Determination Example # **Chapter Five** # STORM SEWER DESIGN STANDARDS AND SPECIFICATIONS GMC Sec. 9-156(d)(2) states that all Stormwater infrastructure must be designed in accordance with the design standards and other requirements set forth in these Technical Standards. All Storm Sewers, whether private or public, and whether constructed on private or public property shall conform to the design standards and other requirements contained herein. ### A. Design Storm Frequencies - 1. All Storm Sewers, Inlets, Catch Basins, and street gutters shall accommodate (subject to the "allowable spread" provisions discussed later in this Section), as a minimum, peak Runoff from a 24-hour, 10-year return frequency storm calculated based on methodology described in Chapter 3. [GMC Sec. 9-156(d)(2)(A)]. Additional Discharges to Storm Sewer systems allowed in Section L below of this Section must be considered in all design calculations. For Rational Method analysis, the Duration shall be equal to the Time of Concentration for the Drainage Area. In computer based analysis, the Duration is as noted in the applicable methodology associated with the computer program. - 2. Culvert Capacities for Conveyance under interior local, collector, or arterial streets without roadway overtopping shall be the Runoff resulting from the 25-year, 50-year, and 100-year frequency storms, respectively, for Off-Site areas under existing condition and On-Site areas under post-developed conditions. Driveway Culvert Capacities shall be Capacities required for the street classification to which the driveway connects. [GMC Sec. 9-156(d)(2)(B)]. Greater Culvert Capacity shall be required to protect the finished floor elevation of Buildings from the post-developed 100-year frequency storm when, in the opinion of the design engineer or the City, the finished floor elevation is threatened. If the street or road provides the only access to or from any portion of any commercial or residential Development, the crossing shall be designed for a minimum of 100-year frequency storm. - 3. For portions of the system considered Minor Drainage Systems, the allowable spread of water on Collector Streets is limited to maintaining two clear 10-foot moving lanes of traffic. One lane is to be maintained on Local Roads, while other access lanes (such as a Subdivision cul-de-sac) may have a water spread equal to one-half of their total width. [GMC Sec. 9-156(d)(2)(C)]. - 4. To ensure access to Buildings and allow the use of the roadway by emergency vehicles during storms larger than the Design Storm, an overflow Channel/Swale between sag Inlets and overflow paths or basin shall be provided at sag Inlets so that the maximum depth of water that might be ponded in the street sag shall not exceed seven (7) inches measured from elevation of gutter. All water shall be contained in the Right-of-Way for a 100-year storm. [GMC Sec. 9-156(d)(2)(D)]. - 5. Facilities functioning as a Major Drainage System as defined in **Appendix A** must also meet IDNR design standards in addition to the City of Greenwood standards. In case of discrepancy, the most restrictive requirements shall apply. - 6. Pipe, twelve (12) inches or larger in diameter, shall be placed in a 30-foot easement (fifteen (15) feet from centerline on each side) and shall be designated on the record plat as a 30-foot Drainage Easement. Wider easements may be required by the City when the depth of pipe is greater than six (6) feet, depending on the pipe size. ### B. Manning's Equation Determination of hydraulic Capacity for Storm Sewers sized by the Rational Method analysis must be done using Manning's Equation. Where: $$V = (1.486/n)(R^{2/3})(S^{1/2})$$ Then: Q=(V)(A) Where: Q = Capacity in Cubic Feet Per Second V = mean velocity of flow in feet per second A = cross sectional area in square feet R = hydraulic radius in feet S = Slope of the energy Grade line in feet per foot n = Manning's "n" or roughness coefficient The hydraulic radius, R, is defined as the cross sectional area of flow divided by the wetted flow surface or wetted perimeter. Allowable "n" values and maximum permissible velocities for Storm Sewer materials are listed in **Table 5-1**. **TABLE 5-1** | Typical Values of Manning's "n" | | | | | |---------------------------------|----------------------|-------------------------------------|--|--| | Material | Manning's
"n" | Maximum Velocities
(feet/second) | | | | Closed Conduits | | | | | | Concrete | 0.013 | 10 | | | | Vitrified Clay | 0.013 | 10 | | | | HDPE | 0.012 | 10 | | | | PVC | 0.011 | 10 | | | | Circular CMP, Annular Corrugati | ions, 2 2/3 x ½ inch | | | | | Unpaved | 0.024 | 7 | | | | 25% Paved | 0.021 | 7 | | | | 50% Paved | 0.018 | 7 | | | | 100% Paved | 0.013 | 7 | | | | Concrete Culverts | 0.013 | 10 | | | | HDPE or PVC | 0.012 | 10 | | | | Open Channels | | | | | | Concrete, Trowel Finish | 0.013 | 10 | | | | Concrete, Broom Finish | 0.015 | 10 | | | | Gunite | 0.018 | 10 | | | | Riprap Placed | 0.030 | 10 | | | | Riprap Dumped | 0.035 | 10 | | | | Gabion | 0.028 | 10 | | | | New Earth (1) | 0.025 | 4 | | | | Existing Earth (2) | 0.030 | 4 | | | | Dense Growth of Weeds | 0.040 | 4 | | | | Dense Weeds and Brush | 0.040 | 4 | | | | Swale with Grass | 0.035 | 4 | | | Source of manning "n" values: HERPICC Stormwater Drainage Manual, July 1995. - New earth (uniform, sodded, clay Soil) - (1) (2) Existing earth (fairly uniform, with some weeds). ### C. Backwater Method for Pipe System Analysis For hydraulic analysis of existing or proposed storm Drains which possess submerged Outfalls, a more sophisticated design/analysis methodology than Manning's equation will be required. The Backwater analysis method provides a more accurate estimate of pipe flow by calculating individual head losses in pipe systems that are Surcharged and/or have submerged Outlets. These head losses are added to a known downstream water surface elevation to give a design water surface elevation for a given flow at the desired upstream location. Total head losses may be determined as follows: Total head loss = frictional loss + Manhole loss + velocity head loss + junction loss Various computer modeling programs such as HYDRA, ILLUDRAIN, and STORMCAD are available for analysis of storm Drains under these conditions. Computer models to be utilized, other than those listed, must be accepted by the Department of Community Development Services prior to their utilization. ### **D.** Minimum Size for Storm Sewers The minimum diameter of all Storm Sewers shall be twelve (12) inches. When the minimum 12-inch
diameter pipe will not limit the rate of release to the required amount, the rate of release for Detention Storage shall be controlled by an Orifice plate or other device, subject to acceptance of the City. [GMC 9-156(d)(3)]. ### E. Pipe Cover, Grade, and Separation from Sanitary Sewers Pipe Grade shall be such that, in general, a minimum of two (2) feet of cover is maintained over the top of the pipe. Uniform Slopes shall be maintained between Inlets, Manholes and Inlets to Manholes. Final Grade shall be set with full consideration of the Capacity required, Sedimentation problems, and other design parameters. [GMC Sec. 9-156(d)(4)(A)]. Minimum and maximum allowable Slopes shall be those capable of producing velocities of between 2.5 and 10 feet per second, respectively, when the Sewer is flowing full. Maximum permissible velocities for various Storm Sewer materials are listed in **Table 5-1**. A minimum of two (2) feet of vertical separation between Storm Sewers and sanitary Sewers shall be required. When this is not possible, the sanitary Sewer must be encased in concrete or ductile steel within five (5) feet, each side, of the crossing centerline. [GMC Sec. 9-156(d)(4)(B)]. ### F. Alignment Storm Sewers shall be straight between Manholes and/or Inlets. ### G. Manholes/Inlets All castings (Inlets and Manholes) must be pre-stamped (embossed) with an appropriate "clean water" message. Manholes and/or Inlets shall be installed to provide human access to continuous underground Storm Sewers for the purpose of inspection and maintenance. The casting access minimum inside diameter shall be no less than twenty-two (22) inches or a rectangular opening of no less than 22 inches by 22 inches. Steps shall be provided in Structures deeper than four (4) feet, with the first step at the depth of two (2) feet and the following steps spaced every one (1) foot until the bottom is reached. When Grade adjustments of Manholes and Inlets are required in the field to meet finish design or existing curb Grade, adjustment rings with a maximum height of twelve (12) inches may be used. Manholes shall be provided at the following locations: - 1. Where two or more Storm Sewers converge. - 2. Where pipe size or the pipe material changes. - 3. Where a change in horizontal alignment occurs. - 4. Where a change in pipe Slope occurs. - 5. At intervals in straight sections of Sewer, not to exceed the maximum allowed. The maximum distance between Storm Sewer Manholes shall be as shown in **Table 5-2**. **TABLE 5-2** | Maximum Distance Between Manholes | | | | | |-----------------------------------|----------------------------|--|--|--| | Size of Pipe
(Inches) | Maximum Distance
(Feet) | | | | | 12 through 42 | 400 | | | | | 48 and larger | 600 | | | | Manhole/Inlet inside sizing shall be according to the City of Greenwood Standard Construction Details. Absent other acceptable Water Quality measures, the downstream most Structure prior to the Detention Basin that collects water from within the right of way shall be required to have a two (2) feet deep Sump. This Structure must also be located within fifteen (15) feet of the curb, where practical. If this Structure cannot be placed within fifteen (15) feet of the curb, at a minimum, it must be located within an easement and be easily accessible for maintenance. If the last Structure does not meet this criterion, then the Structure must be moved up the pipe run until this requirement is satisfied. Also, if this Structure is a curb Inlet and the Structure sizing chart would allow this to be a 2' x 2' box, it must be upsized to a 48" box because of the 2' sump. In addition to the above requirements, a minimum drop of 0.1 foot through Manholes and Inlet Structures shall be provided. When changing pipe size, match Crowns of pipes, unless detailed modeling of Hydraulic Grade Line shows that another arrangement would be as effective. Pipe Slope should not be so steep that Inlets Surcharge (i.e. Hydraulic Grade Line should remain below rim elevation). All connections to Storm Sewer Structures shall be core-drilled and properly sealed. No direct connections or "blind taps" shall be made to storm pipes. Manhole/Inlet inside sizing shall be as shown in **Table 5-3**. **TABLE 5-3** | Manhole/Inlet Inside Sizing | | | | | | |-------------------------------------|-----------|------------------------|--|--|--| | Depth of Minimum Structure Diameter | | Minimum Square Opening | | | | | Less than 5 feet | 36 inches | 36" x 36" | | | | | 5 feet or more | 48 inches | 48" x 48" | | | | ### H. Inlet Sizing and Spacing Inlets or Drainage Structures shall be utilized to collect surface water through grated openings and convey it to Storm Sewers, Channels, or Culverts. The Inlet grate opening provided shall be adequate to pass the design 10-year flow with 50% of the sag Inlet areas clogged. Inlets shall be provided so that surface water is not carried across or around any intersection nor for a distance greater than four-hundred (400) feet on local streets and three-hundred feet on collector streets. An overflow Channel from sag Inlets to the overflow Channel or basin shall be provided at sag Inlets. Inlet design and spacing may be done using the hydraulic equations by manufacturers or Orifice/Weir equations. Use of the U.S. Army Corps of Engineers HEC-12 computer program is also an acceptable method. Gutter spread on continuous Grades may be determined using the Manning's equation, or by using **Figure 5-1**. Further guidance regarding gutter spread calculation may be found in the latest edition of HERPICC Stormwater Drainage Manual, available from the Local Technical Assistance Program (LTAP). At the time of printing of this document, contact information for LTAP was: Indiana LTAP Purdue University Toll-Free: (800) 428-7369 (Indiana only) Phone: (765) 494-2164 Fax: (765) 496-1176 Email: <u>inltap@ecn.purdue.edu</u> Website: www.purdue.edu/INLTAP/ ### I. Installation and Workmanship The point of commencement for laying a Storm Sewer pipe shall be the lowest point in the proposed Sewer line. All pipes shall be laid, without break, upgrade from Structure to Structure. All Storm Sewer pipe Outlets shall have poured in place toewalls with anchor bolts. Most recent City of Greenwood Storm Details standards shall be used. The specifications for the construction of Storm Sewers and sub-Drains, including backfill requirements, shall not be less stringent than those set forth in the latest edition of the INDOT "Standard Specifications." Dips/sags on newly installed storm systems will not be allowed. Also, Infiltration from cracks, missing pieces, and joints will not be allowed. Prior to release of performance guarantees for Storm Sewers, video of all pipe and Manholes shall be submitted for review and approval by the City. [GMC Sec. 9-161(i)(2)]. ### J. Materials Storm Sewer Manholes and Inlets shall be constructed of cast in place concrete or pre-cast reinforced concrete. All Subsurface Drains, including Swale Underdrains, curb Underdrains, etc. shall be smooth double-wall pipe. Material and construction shall conform to the latest edition of the INDOT "Standard Specifications," Sections 702 and 720. Pipe and fittings used in Storm Sewer construction shall be concrete pipe (AASHTO M170). Other pipe and fittings not specified herein or in Sections 907-908 of the latest edition of the INDOT "Standard Specifications" may be used only when specifically authorized by the City. Pipe joints shall be flexible and watertight and shall conform to the requirements of Section 906, of the latest edition of the INDOT "Standard Specifications." ### **K.** Special Hydraulic Structures Special hydraulic Structures required to control the flow of water in storm Runoff Drainage systems include Junction Chambers, Drop Manholes, Stilling Basins, and other special Structures. The use of these Structures shall be limited to those locations justified by prudent planning and by careful and thorough hydraulic engineering analysis. Certification of special Structures by a licensed Structural Engineer may also be required. ### L. Drainage System Overflow Design Overflow path/ponding areas throughout the Development resulting from a 100-year Storm Event, calculated based on all contributing Drainage Areas, On-Site and Off-Site, in their proposed or reasonably anticipated land use and with storm pipe system assumed completely plugged, shall be determined in accordance with these Technical Standards. [GMC Sec. 9-156(d)(5)(B)]. The centerline of this 100-year overflow path shall be clearly shown as a distinctive line symbol on the plans, and a minimum width of thirty (30) feet flow width along the centerline of the flow path (fifteen (15) feet from centerline on each side) designated as permanent Drainage easements. A continuous Flood route from the sag Inlets to the final Outfall shall be shown and the minimum 30-feet along the centerline contained within an easement or road Right-of-Way regardless of the 100-year Storm Event ponding elevation. There shall be no trees or shrubs planted, nor any Structures or fences erected within the easement areas. [GMC Sec. 9-155(b)(1)]. These areas are easements that are to be maintained by the property owners or be designated as common areas to be maintained by the homeowners association. The Lowest Adjacent Grade (LAG) for all residential, commercial, or industrial Buildings shall be set a minimum of one (1) foot (rather than normal two (2) feet, as the storm Drains are assumed plugged as an additional safety factor) above the noted overflow path/ponding elevation. All Buildings shall have a minimum Flood Protection Grade shown on the secondary plat. [GMC Sec. 9-156(d)(5)(B)]. Minimum Flood Protection Grade of all Structures fronting a pond or open Ditch shall be no less than two (2) feet (one (1) foot for the 100-year overflow path as the storm Drains are assumed plugged as an additional safety factor) above
any adjacent 100-year local or regional Flood Elevations, whichever is greater, for all windows, doors, attached garage entrances, unsealed pipe entrances, window well rim elevations, and any other Structure member where Floodwaters can enter a Building. The overflow path/ponding may be modeled as successive series of natural ponds and open Channel segments. Ponds should be modeled similar to that discussed for modeling depressional areas in Chapter 7. Channels should be modeled according to modeling techniques discussed in Chapter 6. The calculations for determining the 100-year overflow path/ponding elevations may be based on hand calculation methods utilizing Normal Depth calculations and storage routing techniques or performed by computer models. Examples of computer models that either individually or in combination with other models can handle the required computations include TR-20, HEC-HMS, and HEC-1, combined with HEC-RAS. Other models must be accepted by the City prior to their utilization. Values in **Table 5-4** may be utilized as an alternative to the above-noted detailed calculations for determining the required LAG or pad elevations of Buildings near an overflow path. **TABLE 5-4** | Minimum Building LAG/Pad Elevations With Respect to Overflow Path
Invert Elevations | | | | | | |--|--|---|--|--|--| | Drainage Area (acres) | Building LAG/Pad
Elevation Above
Overflow Path
Invert (ft.) | Building LAG/Pad
Elevation Above Overflow
Path Invert, if Overflow
Path is in the Street (ft.) | | | | | Up to 5 | 2.5 | 1.5 | | | | | 6-10 | 3.0 | 1.5 | | | | | 11-15 | 3.25 | 1.75 | | | | | 16-20 | 3.5 | 1.75 | | | | | 21-30 | 4.0 | 2.0 | | | | | 30-50 | 4.25 | 2.0 | | | | If **Table 5-4** is used, the City reserves the right to require independent calculations to verify that the proposed Building pads/Building LAGs provide adequate Freeboard above the anticipated overflow path/ponding elevations. The LAG requirements for Buildings adjacent to other flooding sources are discussed elsewhere in the Ordinance or in this Manual. In case there is more than one flooding source applicable to a Building Site, the highest calculated LAG for the building shall govern the placement of the Building on that Site. In the case of existing upstream Detention, an allowance equivalent to the reduction in flow rate provided may be made for upstream Detention only when: (1) such Detention and Release Rate have previously been accepted by the City at the time of the acceptance, and (2) evidence of its construction and maintenance can be shown. FIGURE 5-1 Street and Gutter Capacities (continuous grade) ### **Chapter Six** ## OPEN CHANNEL DESIGN STANDARDS AND SPECIFICATIONS GMC Sec. 9-156 provides that Design Storm frequencies shall be determined in accordance with these Technical Standards. All open Channels, whether private or public, and whether constructed on private or public land, shall conform to the design standards and other design requirements contained herein. #### A. Design Storm Frequencies - 1. All Channels and Swales shall accommodate, as a minimum, peak Runoff from a 24-hour, 10-year return frequency storm calculated based on methodology described in Chapter 3. [GMC 9-156(d)(2)(a)]. For Rational Method analysis, the storm Duration shall be equal to the Time of Concentration for the Drainage Area. In computer-based analysis, the Duration is as noted in the applicable methodology associated with the computer program. - 2. Channels with a carrying Capacity of more than thirty (30) Cubic Feet Per Second at bank-full stage shall be capable of accommodating peak Runoff for a 24-hour, 50-year return frequency storm within the Drainage easement. - 3. Channel facilities functioning as a major Drainage system, as defined in **Appendix A**, must also meet IDNR design standards in addition to the City standards. In case of discrepancy, the most restrictive requirements shall apply. - 4. The 10-year storm design flow for residential rear and side lot Swales shall not exceed four (4) Cubic Feet Per Second. Unless designed as a post-construction Stormwater Quality BMP, the maximum length of rear and side lot Swales before reaching any Inlet shall not exceed 400 feet and shall not convey flow from more than three (3) lots. - 5. Regardless of minimum <u>design</u> frequencies stated above, the performance of all parts of Drainage system shall be <u>checked</u> for the 100-year flow conditions to insure that all Buildings are properly located outside the 100-year Flood boundary and that flow paths are confined to designated areas with sufficient easement. Stormwater Technical Standards - Chapter 6 - Page 1 6. A minimum of twenty-five (25) feet from top of the bank on each side of a new Channel shall be designated on the recorded plat as a Drainage Easement, in accordance with Chapter 2. No landscaping is allowed within any Drainage easement, except for a minimum 25-foot width of Filter Strip that shall be installed along the top of bank. [GMC Sec. 9-155(b)(1)]. #### **B.** Manning's Equation The Waterway area for Channels shall be determined using Manning's Equation, where: $$A = Q/V$$ A = Waterway area of Channel in square feet Q = Discharge in Cubic Feet Per Second (cfs) V = Steady-State Channel velocity, as defined by Manning's Equation (See Chapter 5) #### C. Backwater Method for Drainage System Analysis The determination of 100-year water surface elevation along Channels and Swales shall be based on accepted methodology and computer programs designed for this purpose. Computer programs HEC-RAS, HEC-2, and ICPR are preferred programs for conducting such Backwater analysis. The use of other computer models must be accepted in advance by the Department of Community Development Services. #### D. Channel Cross-Section and Grade - 1. The required Channel Cross-Section and Grade are determined by the design Capacity, the material in which the Channel is to be constructed, and the requirements for maintenance. A minimum depth may be required to provide adequate Outlets for subsurface Drains, Tributary Ditches, or Streams. The Channel Grade shall be such that the velocity in the Channel is high enough to prevent Siltation but low enough to prevent Erosion. Velocities less than two (2) feet per second are not acceptable, as Siltation will take place and ultimately reduce the Channel Cross-Section area. The maximum permissible velocities in vegetation-lined Channels are shown in **Table 6-1.** In addition to existing Runoff, the Channel design should incorporate increased Runoff due to the proposed Development. - 2. Where depth of design flow is slightly below critical depth, Channels shall have Freeboard adequate to cope with the effect of hydraulic jumps. - Along the streets and roads, the bottom of the Ditch should be low enough to install adequately sized driveway Culverts without creating "speed bumps." The driveway Culvert Inverts shall be designed to adequately consider upstream and downstream Culvert elevations. - 4. Flow of a Channel into a closed system is prohibited, unless Runoff rate and head loss computations demonstrate the Closed Conduit to be capable of carrying the 100-year Channel flow for developed conditions, either entirely or in combination with a defined overflow Channel, with no reduction of velocity. **TABLE 6-1** | Maximum Permissible Velocities in Vegetal-Lined Channels (1) | | | | | | |---|---|---|---|--|--| | | | Permissible Velocity (2) | | | | | Cover | Channel Slope
Range
(Percent)
(3) | Erosion
Resistant Soils
(ft. per sec.)
(4) | Easily
Eroded Soils
(ft. per sec.)
(4) | | | | Bermuda Grass | 0-5
5-10
Over 10 | 8
7
6 | 6
5
4 | | | | Bahia Buffalo Grass Kentucky Bluegrass Smooth Brome Blue Grama | 0-5
5-10
Over 10 | 7
6
5 | 5
4
3 | | | | Grass Mixture
Reed Canary Grass | (3) 0-5 5-10 | 5
4 | 4 3 | | | | Lespedeza Sericea Weeping Lovegrass Yellow Bluestem Redtop Alfalfa Red Fescue | (4)
0-5
5-10 | 3.4 | 2.5 | | | | Common
Lespedeza (5)
Sudangrass (5) | (6)
0-5 | 3.5 | 2.5 | | | - (1) From Soil Conservation Service, SCS-TP-61, "Handbook of Channel Design for Soil and Water Conservation." - Use velocities exceeding five (5) feet per second only where good Channel Ground Covers and proper maintenance can be obtained. - (3) Do not use on Slopes steeper than 10 percent except for vegetated side Slopes in combination with a stone, concrete, or highly resistant vegetative center section. - (4) Do not use on Slopes steeper than 5 percent except for vegetated side Slopes in combination with a stone, concrete, or highly resistant vegetative center section. - (5) Annuals use on mild Slopes or as temporary protection until permanent covers are established. - (6) Use on Slopes steeper than 5 percent is not recommended. #### E. Side Slopes - 1. Earthen Channel and Swale side Slopes shall be no steeper than three (3) horizontal to one (1) vertical (3:1). Flatter Slopes may be required to prevent Erosion and for ease of maintenance. - 2. Where Channels will be lined with Riprap, concrete, or other acceptable lining method, side Slopes shall be no steeper than two (2) horizontal to one (1) vertical (2:1) with adequate provisions made for weep holes. - 3. Side Slopes steeper than two (2) horizontal to one (1) vertical (2:1) may be used for lined Channels provided that the side lining is designed and constructed as a
structural retaining wall with provisions for live and dead load Surcharge. - 4. When the design Discharge produces a depth of greater than three (3) feet in the Channel, appropriate safety precautions shall be added to the design criteria based on reasonably anticipated safety needs. #### F. Channel Stability - 1. Characteristics of a stable Channel are: - a) It neither promotes Sedimentation nor degrades the Channel bottom and sides. - b) The Channel banks do not erode to the extent that the Channel Cross-Section is changed appreciably. - c) Excessive Sediment bars do not develop. - d) Excessive Erosion does not occur around Culverts, bridges, Outfalls or elsewhere. - e) Gullies do not form or enlarge due to the entry of uncontrolled flow to the Channel. - Channel stability shall be determined for an aged condition and the velocity shall be based on the design flow or the bankfull flow, whichever is greater, using an "n" value for various Channel linings as shown in **Tables 4-1 and 5-1**. In no case is it necessary to check Channel stability for Discharges greater than that from a 100-year frequency storm. - 3. Channel stability shall be checked for conditions representing the period immediately after construction. For this stability analysis, the velocity shall be calculated for the expected flow from a 10-year frequency storm on the Watershed, or the bankfull flow, whichever is smaller, and the "n" value for the newly constructed Channels in fine-grained Soils and Sands may be determined in accordance with the "National Engineering Handbook 5, Supplement B, Soil Conservation Service" and shall not exceed 0.025. This reference may be obtained by contacting the National Technical Information Service in Alexandria, Virginia. The allowable velocity in the newly constructed Channel may be increased by a maximum of twenty percent (20%) to reflect the effects of vegetation to be established under the following conditions: - a) The Soil and Site in which the Channel is to be constructed are suitable for rapid establishment and support of Erosion controlling vegetation. - b) Species of Erosion controlling vegetation adapted to the area, and proven methods of establishment are shown. - c) The Channel design includes detailed plans for establishment of vegetation on the Channel side Slopes. #### **G.** Drainage Swales Minimum longitudinal Swale Slopes are 0.5%. Minimum Swale width shall be six (6) feet. All flow shall be confined to the specific easements associated with each rear and side lot Swale that are part of the minor Drainage system. Unless designed to act as a Stormwater Quality BMP, vegetated Swales shall have 6-inch subsurface Drain with a minimum cover of two (2) feet to dry the Swales. If the Swale longitudinal Slope is less than one percent (1%), a paved concrete Swale as approved by the City shall be required. No sub-surface Drains are necessary for paved concrete Swale. The City may waive the requirement for providing a subsurface Drain when the longitudinal Slope is between 1% and 1.3% and Site conditions do not allow for the construction of a positive Outlet for an Underdrain in accordance with the variance/waiver procedures set forth in GMC Sec. 9-162. Sub-surface Drains may be Outletted through a drop Structure at the ends of the Swale or through a standard tile Outlet. The final ten (10) feet of underdrain pipe run prior to the Outlet shall be of Schedule 40 PVC. Cleanout risers are to be installed at the high point as well as end of run, with a maximum distance between risers of 400 feet. The noted sub-surface Drains shall be installed with the use of laser control equipment or equivalent. Further guidance regarding this subject may be found in the latest edition of the Indiana Drainage Handbook. #### H. Appurtenant Structures The design of Channels will include provisions for operation and maintenance and the proper functioning of all Channels, laterals, travelways, and Structures associated with the project. Recessed Inlets and Structures required for entry of surface and subsurface flow into Channels without significant Erosion or degradation shall be included in the design of Channel Improvements. The design shall also provide for necessary Floodgates, water level control devices, and any other appurtenant Structures affecting the function of the Channels and the attainment of the purpose for which they are built. The effects of Channel Improvements on existing Culverts, bridges, buried cables, pipelines, and Inlet Structures for surface and Subsurface Drainage on the Channel being improved and laterals thereto shall be evaluated to determine the need for modification or replacement. Culverts and bridges which are modified or added as part of Channel Improvement projects shall meet reasonable standards for the type of Structure, and shall have a minimum Capacity equal to the design Discharge or governmental agency design requirements, whichever is greater. #### I. Deposition of Spoil Spoil material resulting from clearing, grubbing, and Channel excavation shall be disposed of in a manner that will: - 1. Minimize overbank wash. - 2. Provide for the free flow of water between the Channel and Floodplain boundary unless the valley routing and water surface profiles are based on continuous dikes being installed. - 3. Not hinder the development of travelways for maintenance. - 4. Leave the Right-of-Way in the best condition feasible, consistent with the project purposes, for productive use by the owner. - 5. Be accepted by the IDNR, IDEM, and COE, if applicable. #### J. Materials Materials acceptable for use as Channel lining are: - 1. Grass - 2. Revetment Riprap - 3. Concrete - 4. Hand Laid Riprap - 5. Precast Cement Concrete Riprap - 6. Gabions - 7. Straw or Coconut Mattings (only until Grass is established) Other lining materials must be accepted in writing by the City and may be subject to the requirements for Easement Use Permits set forth in GMC Sec. 9-161(e) and Chapter 12, Section C of these Technical Standards. Materials shall comply with the latest edition of the INDOT "Standard Specifications." #### K. Drainage System Overflow Design See Chapter 5, Section L. ### **Chapter Seven** ### STORMWATER DETENTION DESIGN STANDARDS FOR PEAK FLOW CONTROL GMC Sec. 9-156(c) requires the construction of Detention facilities to temporarily detain the Stormwater Runoff that exceeds the maximum peak Release Rate authorized by the Ordinance and these Technical Standards. The required volume of storage provided in these basins, together with such storage as may be authorized in other On-Site facilities, shall be sufficient to control excess Runoff from the 10-year or 100-year storm. Also, basins shall be constructed to provide adequate Capacity to allow for Sediment accumulation resulting from Development and to permit the pond to function for reasonable periods between cleanings. In addition to the requirement for Peak Flow control through Detention, the Stormwater Management Ordinance and Technical Standards require the Developer to address Channel Protection requirements discussed in Chapter 9. The proper way to accommodate the Channel protection, and Peak Flow rate control of a Site is to first consider addressing the Channel protection volume requirements through conventional or LID approaches (as described in Chapter 9) and then add in the required Detention Storage for Peak Flow rate control to the overall Site design. Meeting the Channel protection volume requirements, either using Conventional or LID Approaches, often include providing extended Detention Storage features that are usually combined with the Detention Storage needed for peak Runoff rate control of the Site into one facility. #### A. Calculation Sequence for Designing Detention Ponds The following is the required calculation sequence for designing a Detention pond with a combined extended Detention and Peak Flow control Detention functions. These steps should be followed carefully to avoid potential for future rework. - 1. Calculate the required extended Detention Storage volume as needed to address the Channel Protection Volume (CPv) through the methodology provided in Chapter 9 and 10 (depending on the approach utilized, there may be no need for providing an extended Detention Storage). - 2. Determine the control elevation/Invert for the Drain serving the proposed extended Detention Storage (ensuring a positive Drain to the Site Outlet). This will be the elevation of the bottom of the proposed extended Detention Storage and top of the permanent pool if a wet bottom pond is being provided for. - 3. Design a storage space to accommodate the extended Detention Storage volume determined in Step 1, assuming 0.0 Cubic Feet Per Second going through the Drain that will serve this extended Detention Storage volume. The top of this storage space will be the bottom of the Peak Flow rate control Detention Storage and the Invert of the main Outlet of this Peak Flow rate control Detention Storage. - 4. Design the main Outlet of the Peak Flow rate control Detention Storage, sized to carry the allowable 10-year and 100-year Release Rates, with its control elevation/Invert at the top of the extended Detention Storage space. For storage space calculation purposes, use the actual Orifice size calculated to accommodate the Release Rates regardless of whether the Orifice size is smaller or larger than the minimum Orifice size allowed under the Ordinance and these Technical Standards. - 5. Design the Peak Flow rate control Detention Storage space by routing the 10-year and 100-year inflow Hydrographs through the pond, assuming the pond is empty to the control elevation of the extended Detention Storage Drain as determined in Step 2, but still assuming 0.0 Cubic Feet Per Second can get out of the extended Detention Storage Drain as the pond fills up. The resulting maximum water surface elevation is the 100-year pool elevation, where the Invert of the
emergency overflow Weir (sized for 1.25 times the peak inflow rate) is located. The pond size and control elevation/Invert elevations are final at this stage. - 6. Determine the size of the extended Detention Storage Drain and design the Drain system in a manner to meet the extended Detention minimum and maximum emptying time requirements discussed in Chapter 9. Due to typically required clog-free design and maintenance of the extended Detention Storage Drain Structures, the minimum Orifice size requirements do not apply to these Drain Structures. - 7. To make sure that the addition of the release through the Drain will not cause the allowable Release Rate to be exceeded, reroute the 10-year and 100-year inflow Hydrographs through the pond, this time allowing water to also leave through the extended Detention Storage Drain as the pond fills up. If the total peak outflow Discharge exceeds the allowable Release Rate, reduce the size of the main Outlet Orifice accordingly (but do not go back to redesign the storage space). - 8. If the calculated Orifice size of the main Peak Flow rate control storage Outlet is less than the minimum Orifice size allowed in the Ordinance and these Technical Standards, designate the minimum Orifice size on the Construction Plans, but do not go back and recalculate/redesign the storage spaces. The following shall govern the design of any improvement with respect to the Detention of Stormwater Runoff for Peak Flow control. #### **B.** Acceptable Detention Facilities The increased Stormwater Runoff resulting from a proposed Development should be detained On-Site by the provisions of appropriate above- or below-ground wet bottom or dry bottom Detention facilities, parking lots, or other acceptable techniques. Measures that retard the rate of Overland Flow and the velocity in Runoff Channels shall also be used to partially control Runoff rates. [GMC Sec. 9-156(c)(5)]. #### C. Allowable Release Rates #### 1. General Release Rates Control devices shall limit the Discharge to a rate such that the post-developed Release Rate from the Site is no greater than 0.1 cfs per acre of Development for 0-10 year return interval storms and 0.3 cfs per acre of developed area for 11-100 year return interval storms. The above fixed general Release Rates may be set at a lower value by the City for certain Watersheds if more detailed data becomes available as a result of comprehensive Watershed studies conducted and/or formally approved and adopted by the City of Greenwood. The applicant shall confirm the applicable Release Rates with the City prior to initiating the design calculations to determine whether a basin-specific rate has been established for the Watershed. For Sites where the pre-developed area has more than one (1) Outlet, the Release Rate should be computed based on pre-developed Discharge to each Outlet point. The computed Release Rate for each Outlet point shall not be exceeded at the respective Outlet point even if the post developed conditions would involve a different arrangement of Outlet points. #### 2. Site-Specific Release Rates for Sites with Depressional Storage For Sites where depressional storage exists, the general Release Rates provided above may have to be further reduced. If depressional storage exists at the Site, Site-specific Release Rates must be calculated according to methodology described in Chapter 3, accounting for the depressional storage by modeling it as a pond whose Outlet is a Weir at an elevation that Stormwater can currently overflow the depressional storage area. Post developed Release Rate for Sites with depressional storage shall be the 2-year pre-developed peak Runoff rate for the post-developed 10-year storm and 10-year pre-developed peak Runoff rate for the post-developed 100-year storm. In no case shall the calculated Site-specific Release Rates be larger than general Release Rates provided above. Note that by definition, the depressional storage does not have a direct gravity Outlet but if in agricultural production, it is more than likely drained by a tile and should be modeled as "empty" at the beginning of a storm. The function of any existing depressional storage should be modeled using an event Hydrograph model to determine the volume of storage that exists and its effect on the existing Site Release Rate. To prepare such a model, certain information must be obtained, including delineating the Tributary Drainage area, the stage-storage relationship and Discharge-rating curve, and identifying the Capacity and elevation of the Outlet(s). The Tributary area should be delineated on the best available topographic data. After determining the Tributary area, a hydrologic analysis of the Watershed shall be performed, including, but not limited to a calculation of the appropriate composite Runoff Curve Number and Time of Concentration. Stage-storage data for the depressional area should be obtained from the Site Topography. The Outlet should be clearly marked and any calculations performed to create a stage-Discharge rating curve must be included with the Stormwater submittal. Also note that for determining the post-developed peak Runoff rates, the depressional storage must be assumed to be filled unless the City can be assured, **through dedicated easement**, that the noted storage will be preserved in perpetuity. #### 3. <u>Management of Off-Site Runoff</u> Runoff from all upstream Tributary areas (Off-Site Land Areas) may be bypassed around the Detention/Retention Facility without attenuation. Such Runoff may also be routed through the Detention/Retention Facility, provided that a separate Outlet system or Channel is incorporated for the safe passage of such flows, i.e., not through the primary Outlet of a Detention Facility. Unless the pond is being designed as a regional Detention Facility and therefore all Off-Site Runoff to the pond detained, the primary Outlet Structure shall be sized and the Invert elevation of the emergency overflow Weir determined according to the On-Site Runoff only. To accomplish this, the 100-year On-Site Runoff must be determined by temporarily ignoring the Off-Site Runoff and routing it through the pond and through the primary Outlet pipe. The resulting pond elevation would be the Invert elevation of the emergency overflow Weir. Once the size and location of primary Outlet Structure and the Invert elevation of the emergency overflow Weir are determined by considering On-Site Runoff, the 100-year pond elevation is determined by routing the entire inflow, On-Site and Off-Site, through the pond. Note that the total Peak Flow released from the Outlet system shall not be larger than the total of the allowable Release Rate and the Off-Site flow being bypassed through the pond for the 100-year event. A separate emergency overflow Spillway would then need to be placed at the 100-year pond elevation and the top of the Dam elevation shall be constructed with a minimum Freeboard of two (2) feet. Note that the efficiency of the Detention/Retention Facility in controlling the On-Site Runoff may be severely affected if the Off-Site area is considerably larger than the On-Site area. As a general guidance, on-line Detention may not be effective in controlling On-Site Runoff where the ratio of Off-Site area to On-Site area is larger than 5:1. Additional Detention (above and beyond that required for On-Site area) may be required by the City when the ratio of Off-Site area to On-Site area is larger than 5:1. #### 4. Downstream Restrictions In the event the downstream receiving Channel or storm Sewer system is inadequate to accommodate the post-developed Release Rate provided above, then the allowable Release Rate shall be reduced to that rate permitted by the Capacity of the receiving downstream Channel or storm Sewer system. Additional Detention, as determined by the City, shall be required to store that portion of the Runoff exceeding the Capacity of the receiving Sewers or Waterways. When such downstream restrictions are suspected, the City may require additional analysis to determine the receiving system's limiting downstream Capacity. If the proposed Development makes up only a portion of the undeveloped Watershed upstream of the limiting restriction, the allowable Release Rate for the Development shall be in direct proportion to the ratio of its Drainage area to the Drainage area of the entire Watershed upstream of the restriction. As an alternative to reduction of Release Rates, the City may require the applicant to pursue alleviating downstream restrictions. The applicant would be responsible for obtaining all permits and consents required and for incurring all expenses involved in such undertaking. #### 5. Documentation of Results The results of the allowable Release Rate determinations as well as the modeling simulation results must be summarized in a table that shall be included in the Stormwater Drainage Technical Report and on the Drainage Plan. The table must include, for each eventual Site Outlet, the predeveloped acreage Tributary to each eventual Site Outlet, the unit Discharge allowable Release Rate used, the resulting allowable Release Rate in Cubic Feet Per Second for the post-developed 10-year and 100-year events as well as pre- and post-developed flow rates for 2-, 10- and 100-year events. The worksheet provided as **Table 7-1** should be filled for each final Site Outlet. **TABLE 7-1** | CITE | | PRE-DEVELOPMENT | | | | POST-DEVELOPMENT | | | | | | |---------------------|--|-----------------|----------------------------------|-----------|------------|------------------|-----------|----------------------------------|-----------|------------|-------------| | SITE
OUTLET
| ITEM | D.A.
(ac) | Depress.
Storage?
(yes/no) | 2-
Yr. | 10-
Yr. | 100-
Yr. | D.A. (ac) | Depress.
Storage?
(yes/no) | 2-
Yr. |
10-
Yr. | 100-
Yr. | | | Default Unit Discharge Allowable Release Rate (cfs/acre) | | | | | | | | | 0.1 | 0.3 | | | Basin-Specific
Unit Discharge
Allowable
Release Rate,
if any
(cfs/acre) | | | | | | | | | | | | 1 | Unit Discharge Allowable Release Rate Based on D/S Restrictions, if any (cfs/acre) | | | | | | | | | | | | 1 | Adopted Unit Discharge Allowable Release Rate (cfs/acre) | | | | | | | | | | | | | Contributing Area of Development Site (ac) and Allowable Release Rate (cfs) | | | | | | | | | | | | | Total Contributing DA (ac) and Modeling Results (cfs) | | | | | | | no | | | | #### D. General Detention Basin Design Requirements - 1. The Detention Facility shall be designed in such a manner that a minimum of 90% of the maximum volume of water stored and subsequently released at the design Release Rate shall not result in a storage Duration in excess of forty-eight (48) hours from the start of the storm unless additional storms occur within the period. In other words, the design shall ensure that a minimum 90% of the original Detention Capacity is restored within forty-eight (48) hours from the start of the design 100-year storm. - 2. The 100-year elevation of Stormwater Detention facilities shall be separated by not less than twenty-five (25) feet from any Building or Structure to be occupied. The top of bank for all Detention facilities shall be at least two (feet) above the 100-year pond elevation (except for Emergency Spillway); this is commonly referred to as "Freeboard." The Lowest Adjacent Grade (including walkout Basement floor elevation) for all residential, commercial, or industrial Buildings shall be set a minimum of two (2) feet above the 100-year pond elevation or 2 feet above the emergency overflow Weir elevation, whichever is higher. In addition to the Lowest Adjacent Grade requirements, any Basement floor must be at least a foot above the normal water level of any Wet-Bottom pond or the local Groundwater Table, whichever is higher, to avoid the overuse of Sump Pumps and frequent flooding of the Basement. - 3. No Detention Facility or other water storage area, permanent or temporary, shall be constructed under or within twenty (20) feet of any utility pole or high voltage electric line. Likewise, utility poles or high voltage electric lines shall not be placed within twenty (20) feet of any Detention Facility or other water storage area. - 4. For safety, Erosion control, stability, and ease of maintenance, Slopes no steeper than 3 horizontal to 1 vertical (3:1) shall be permitted above normal pool. - 5. Storm Drain pipes Discharging into the pond shall not be submerged. - 6. Unless specifically required by the City, the decision to use fencing around Detention ponds are left to the owner or the Developer. Recommendations contained within this document do not relieve the applicant and owner/Developer from the responsibility of taking all necessary steps to ensure public safety with regards to such facilities. - 7. Outlet Control Structures shall be designed to operate as simply as possible and shall require little or no maintenance and/or attention for proper operation. For maintenance purposes, the Outlet from the pond shall be a minimum of 0.5 foot above the normal water level of the Receiving Water body. They shall limit Discharges into existing or planned downstream Channels or conduits so as not to exceed the predetermined maximum authorized Peak Flow rate. For above ground facilities, if an Outlet Control Structure includes an Orifice to restrict the flow rate, such Orifice shall be no less than 6 inches in diameter, even if the six (6) inch diameter Orifice results in a Discharge that exceeds the predetermined maximum authorized Peak Flow Release Rates. However, note that the sizing of the pond must still be based on the more restrictive maximum allowable Release Rate. 8. Emergency overflow facilities such as a Weir or Spillway shall be provided for the release of exceptional storm Runoff or in emergency conditions should the normal Discharge devices become totally or partially inoperative. The overflow facility shall be of such design that its operation is automatic and does not require manual attention. Emergency overflow facilities shall be designed to convey, without overtopping the Detention Facility banks, one and one-quarter (1.25) times the peak inflow Discharge resulting from the 100-year Design Storm event Runoff from the entire contributing Watershed Draining to the Detention/Retention Facility, assuming post- Development condition On-Site and existing condition Off-Site. The length of the Weir is to be determined using the Weir equation, with the overflow Weir control elevation at the Pond's 100-year elevation (pond is assumed full to the overflow Weir control elevation), Discharge equal to 1.25 times the peak 100-year inflow, and the maximum head being the difference between the Weir control elevation and the top of the bank. The emergency overflow routing from the emergency overflow facility to an adequate receiving system must be positive (by gravity), located entirely within Common Area, and shown on the Construction Plans and on the plat. No encroachments into the emergency overflow will be permitted. It must be sized to accommodate the design flow of the pond's emergency overflow Weir. Thirty (30) feet along the centerline of this emergency overflow route shall be designated as permanent Drainage easement. No fences or landscaping can be constructed within the easement areas. [GMC The Lowest Adjacent Grade of all residential, Sec. 9-155(b)(1)]. commercial, or industrial Buildings along this emergency overflow route shall be set a minimum of two (2) feet above the Flood Elevation along the route, calculated based on the pond's emergency overflow Weir design Discharge. The Emergency overflow must be constructed with a noneroding surface such as articulated block or approved equal. No Riprap or concrete Weir shall be permitted. 9. Grass or other suitable vegetative cover shall be provided along the banks of the Detention Storage basin. Vegetative cover around Detention facilities should be maintained as appropriate. - 10. Debris and trash removal and other necessary maintenance shall be performed on a regular basis to assure continued operation in conformance to design. - 11. No residential lots or any part thereof, including Swales, shall be used for any part of a Detention Basin assumed full to the 100-year water surface elevation or the emergency overflow Weir elevation, whichever is higher. [GMC Sec. 9-156(c)(3)]. Detention Basins, assumed full to the 100-year water surface elevation or the emergency overflow Weir elevation, whichever is higher, shall be placed within a common area either platted or legally described and recorded as a perpetual Stormwater easement. A minimum of fifteen (15) feet horizontally from the top of bank of the facility, or the 100-year pool if no defined top of bank is present, shall be dedicated as permanent Stormwater easement if the above-noted boundary of the common area does not extend that far. - 12. Anti-Clog Features: Detention Outlet Structures may require anti-clog devices acceptable to the City. #### E. Additional Requirements for Wet-Bottom Facility Design Where part of a Detention Facility will contain a permanent pool of water, all the items required for Detention Storage shall apply. Also, a controlled positive Outlet will be required to maintain the design water level in the wet bottom facility and provide required Detention Storage above the design water level. However, the following additional conditions shall apply: - 1. Facilities designed with permanent pools or containing permanent lakes shall have a water area of at least one-half (0.5) acre with a minimum depth of ten (10) feet over at least fifty percent (50%) of pond area. The remaining pond area shall have no extensive shallow areas, except as required to install the safety ramp and safety ledge as required below. Construction trash or debris shall not be placed within the permanent pool. - 2. All wet Detention/Retention ponds should be constructed in as natural a shape (footprint) as possible, and have a vegetated safety ledge (approximately six (6) inches below normal pool) and/or have native vegetation planted on the pond banks to create a riparian buffer (minimum ten (10) feet wide). Native vegetation can be installed as container grown plants or as seed at the time of construction. If native vegetation is planted on the pond banks, signage must be provided indicating that it is a natural "Do Not Mow" area. If a non-vegetated safety ledge is installed, the depth of the safety ledge shall be approximately eighteen (18) inches below normal pool. All pond Slopes above normal pool elevation shall be 3:1 (horizontal to vertical) or flatter. Pond Slopes below normal pool elevation - shall be constructed at a maximum Slope of 2H:1V. Pond construction shall conform to City of Greenwood standard details. - 3. Guardrail shall be required along the entire length of right-of-way adjacent to wet ponds and to the endpoint of the radii at each corner adjacent to the right-of-way. Guardrail shall meet INDOT requirements and may include W-Beam or steel-backed timber guardrail. Other guardrail may be considered on a case-by-case basis so long as it meets INDOT specifications. - 4. Prior to final acceptance of construction and release of bonds, danger signs warning of deep water, possible Flood conditions during storm periods, or other dangers per the City standards, shall be installed at an interval of 400 feet around the perimeter of Wet-Bottom facilities. Rescue equipment stations shall be posted at the same locations as the warning signs. Maintenance of the warning signs and rescue equipment stations shall be the responsibility of the owner or the homeowners association. - 5. If a retaining wall is used below the normal pool of wet Detention pond, the
wall shall have either steps or a ladder incorporated into the construction at the center of the wall span. - 6. A safety ramp exit from the lake shall be required in all cases and shall have a minimum width of twenty (20) feet and exit Slope of six (6) horizontal to one (1) vertical (6:1). The safety ramp shall be constructed of suitable material to prevent structural instability due to vehicles or wave action. Adequate access to the safety ramp shall be provided by locating it adjacent to public Right-of-Way or by providing a clear route recorded within an access easement. - 7. Periodic maintenance is required in lakes to control weed and larval growth. The facility shall also be designed to provide for the easy removal of Sediment that will accumulate during periods of Reservoir operation. A means of maintaining the designed water level of the lake during prolonged periods of dry weather may also be required. - 8. Methods to prevent pond stagnation, including but not limited to surface or sub-surface aeration or destratification facilities that can, at the minimum, achieve one complete pond volume turnover per day, shall be provided. Figure below shows a typical diffuser aeration system that consists of a quiet air compressor at the shore, aeration tubing, and one or more sets of diffuser head(s). Irregularly shaped ponds should be treated as two or three separate ponds. Likewise, larger ponds will also need multiple aeration units. Design calculations to substantiate the effectiveness of proposed aeration facilities shall be submitted with final engineering plans. Design calculations should, at a minimum, indicate that the device and or series of devices are providing a minimum volume turnover of once per twenty-four (24) hours over the majority of the pond volume (i.e. pump radius of influence calculations, etc.). Agreements for the perpetual operation and maintenance of aeration facilities shall be prepared to the satisfaction of the City. 9. If the facility is being located near an airport, a minimum horizontal separation distance between the airport property and the pond shall be provided in accordance with Federal Aviation Administration (FAA) advisory Circular 150/5200-33, titled "Hazardous Wildlife Attractions On or Near Airports" and dated August 28, 2007, or the latest update of the same. #### F. Additional Requirements for Dry-Bottom Facility Design In addition to general design requirements, Detention facilities that will not contain a permanent pool of water shall comply with the following requirements: 1. Provisions shall be incorporated into facilities for complete interior Drainage of dry bottom facilities, including the provisions of natural Grades to Outlet Structures, longitudinal and transverse Grades to perimeter Drainage facility. A 6-inch Underdrain with a minimum of 1.5 feet of cover shall be provided within all dry-bottom ponds. If the longitudinal Slope of the Swale at the bottom of the facility is less than 1.3%, a paved concrete Swale as approved by the City shall be required. Minimum Slope on concrete Swales shall be 0.5%. Tile lines may be Discharged through a drop Structure at the pond's Outlet. - 2. For residential Developments, the maximum planned depth of Stormwater stored shall not exceed four (4) feet. - 3. In excavated Detention facilities, a minimum side Slope of 3:1 shall be provided for stability. In the case of valley storage, natural Slopes may be considered to be stable. #### **G.** Detention Facilities in Floodplains Detention facilities shall not be allowed within the 100-year Floodplain. [GMC Sec. 9-156(c)(4)]. #### H. Joint Development of Control Systems Stormwater control systems may be planned and constructed jointly by two or more Developers as long as compliance with the Ordinance and these Technical Standards is maintained. #### I. Diffused Outlets When the allowable Runoff is released in an area that is susceptible to flooding or Erosion, the Developer may be required to construct appropriate storm Drains through such area to avert increased Flood hazard caused by the concentration of allowable Runoff at one point instead of the natural overland distribution. The requirement of diffused Outlet Drains shall be at the discretion of the City. #### J. IDNR Requirements Any construction in the Floodway of a Stream with a Drainage area of one square mile or more must satisfy IDNR permit requirements. #### **K.** Allowance for Sedimentation Detention Basins shall be designed with an additional ten percent (10%) of available Capacity to allow for Sediment accumulation resulting from Development and to permit the pond to function for reasonable periods between cleanings. Basins shall be designed to collect Sediment and debris in specific locations, such as a hydrodynamic separator or equivalent practice, so that removal costs are kept to a minimum. For Wet-Bottom ponds, the Sediment allowance may be provided below the permanent pool elevation. No construction trash or debris shall be allowed to be placed within the permanent pool. If the pond is used as a Sediment control measure during active construction, the performance sureties will not be released until Sediment has been cleaned out of the pond and elevations and Grades have been reestablished as noted in the accepted plans. #### L. Maintenance Provisions for ongoing routine maintenance of Stormwater Detention facilities shall be included in the O&M Manual for a given Site. The routine maintenance of Stormwater Detention facilities (i.e. trash pickup, aeration, weed control, Sediment removal etc.) is the responsibility of the property owner or the Homeowners' Association. In the event the property owner or the Association fails to exercise its obligation, the City may perform the required maintenance and shall have the right to assess the property owner, Homeowners' Association, and, if no Homeowners' Association exists, each lot in the Subdivision a proportionate amount of the associated costs. If necessary, a Notice of Lien shall be filed against the affected lots. The lien shall be enforced in the same manner as a mortgage lien under Indiana law and, therefore, shall include reimbursement of attorney's fees, title expenses, interest, and costs of collection. ### **Chapter Eight** ## CONSTRUCTION SITE STORMWATER POLLUTION PREVENTION STANDARDS Greenwood Municipal Code Section 9-158 provides limitations designed to ensure adequate Stormwater pollution prevention standards during the construction process. The requirements contained in this Chapter are intended to prevent Stormwater pollution resulting from Soil Erosion and Sedimentation or from mishandling of solid and hazardous waste. Practices and measures included herein should assure that no foreign substance (*e.g.*, Sediment, construction debris, chemicals) be transported from a Site and allowed to enter any Drainageway, whether intentionally or accidentally, by machinery, wind, rain, Runoff, or other means. #### A. POLLUTANTS OF CONCERN DURING CONSTRUCTION The major Pollutant of Concern during construction is Sediment. Natural Erosion processes are accelerated at a Project Site by the construction process for a number of reasons, including the loss of surface vegetation and compaction Damage to the Soil Structure itself, resulting in reduced Infiltration and increased surface Runoff. Clearing and Grading operations also expose subsoils which are often poorly suited to re-establish vegetation, leading to longer-term Erosion problems. Problems associated with construction Site Erosion include: transport of pollutants attached to transported Sediment; increased Turbidity (reduced light) in Receiving Waters; and recreational use impairment. The deposited Sediment may pose direct Toxicity to wildlife or smother existing spawning areas and Habitat. This Siltation also reduces the Capacity of Waterways, resulting in increased Flood hazards to the public. Other pollutants of concern during the construction process are hazardous wastes or hydrocarbons associated with the construction equipment or processes. Examples include concrete washout, paints, solvents, and hydrocarbons from refueling operations. Poor control and handling of toxic construction materials pose an acute (short-term) or chronic (long-term) risk of death to aquatic life, wildlife, and the general public. #### B. EROSION AND SEDIMENT CONTROL REQUIREMENTS In calculating the total area of land disturbance, for the purposes of determining applicability of this section to a project, the following guidelines should be used: 1. Off-Site construction activities that provide services (for example, road extensions, Sewer, water, Off-Site stockpiles, and other utilities) to a land disturbing Project Site, must be considered as a part of the total land disturbance calculation for the Project Site, when the activity is under the control of the Project Site Owner. - 2. To determine if multi-lot Project Sites are regulated by this section, the area of land disturbance shall be calculated by adding the total area of land disturbance for improvements, such as, roads, utilities, or common areas, and the expected total disturbance on each individual lot, as determined by the following: - i. For a single-family residential Project Site where the lots are one-half (0.5) acre or more, one-half (0.5) acre of land disturbance must be used as the expected lot disturbance. - ii. For a single-family residential Project Site where the lots are less than one half (0.5) acre in size, the total lot must be calculated as being disturbed. - iii. To calculate lot disturbance on all other types of projects Sites, such as industrial and commercial projects Project Sites, a minimum of one (1) acre of land disturbance must be used as the expected lot disturbance, unless the lots are less than one (1) acre in size, in which case the total lot must be calculated as being disturbed. GMC Sec. 9-160(b) requires that all persons
causing land alterations shall implement Erosion and Sediment Control Measures. The following principles shall govern Erosion and Sediment control practices on all Sites: - 1. Sediment-laden water flowing from the Site shall be detained by Erosion control measures appropriate to minimize Sedimentation. - 2. Water shall not be Discharged in a manner that causes Erosion at or downstream of the point of Discharge. - 3. All access to Building Sites that cross a natural Watercourse, Drainage easement, or Swale/Channel shall have a Culvert of appropriate size. - 4. Wastes or unused building materials, including but not limited to Garbage, debris, cleaning wastes, wastewater, toxic materials, and hazardous substances, shall not be carried by Runoff from a Site. All wastes shall be disposed of in a proper manner. No construction trash or debris shall be allowed to be placed within the permanent pool of the Detention/Retention ponds. If the pond is used as a Sediment control measure during active construction, the performance guarantees will not be released until Sediment has been cleaned out of the pond and elevations and Grades have been reestablished as noted in the accepted plans. - 5. Concrete washout material must be properly contained within an appropriate practice and any waste material properly disposed of. - 6. Sediment being tracked from a Site onto public or private roadways shall be minimized. This can be accomplished initially by a temporary gravel construction entrance, in addition to a well-planned layout of roads, access drives, and parking areas. Any tracking of Sediment onto public roadways shall be <u>fully</u> removed utilizing appropriate methods as soon as practical, but in no case shall tracked Sediment be allowed to remain on the public roadways overnight. - 7. Public or private roadways shall be kept cleared of accumulated Sediment. Bulk clearing of Sediment shall not include flushing the area with water. - 8. All storm Drain Inlets shall be protected against Sedimentation with barriers meeting accepted criteria, standards and specifications. - 9. Runoff passing through a Site from adjacent areas shall be controlled by diverting it around disturbed areas, where practical. Diverted Runoff shall be conveyed in a manner that will not erode the Channel and receiving areas. Alternatively, the existing Channel may be left undisturbed or improved to prevent Erosion or Sedimentation from occurring. - 10. Drainageways and Swales shall be designed and adequately protected so that their final gradients and resultant velocities will not cause Channel or Outlet Scouring. - 11. All disturbed ground left inactive for fifteen (15) or more days shall be stabilized by seeding, sodding, Mulching, covering, or by other equivalent Erosion control measures. - 12. Appropriate Sediment control practices shall be installed prior to any land disturbance and thereafter whenever necessary. [GMC Sec. 9-160(b)(3)]. Additional control measures may be required at the direction of the City. - 13. During the period of Construction Activity at a Site, Erosion control measures necessary to meet the requirements of the Ordinance and these Technical Standards shall be maintained by the applicant. [GMC Sec. 9-160(b)(3)]. #### C. COMMON CONTROL PRACTICES All Erosion control and Stormwater pollution prevention measures required to comply with the Ordinance and these Technical Standards shall meet the design criteria, standards, and specifications similar to or the same as those outlined in the "Indiana Drainage Handbook" and "Indiana Storm Water Quality Manual," (ISWQM) or other comparable and reputable references as accepted by the Board of Stormwater Management. **Table 8-1** lists some of the more common and effective practices for preventing Stormwater pollution from construction Sites. Details of each practice can be found in the Indiana Drainage Handbook, ISWQM, or in Appendix C. These practices should be used to protect *every* potential pollution pathway to Stormwater Conveyances. **TABLE 8-1**Common Stormwater Pollution Control Practices for Construction Sites | Practice No. | BMP Description | Applicability | Fact
Sheet | |--------------|---|--|------------------| | 1 | Site Assessment | All Sites | ISWQM
(Ch.2) | | 2 | Development Of A Construction Sequence Schedule | All Sites | ISWQM
(Ch. 5) | | 3 | Tree Preservation and Protection | Nearly all Sites | ISWQM | | 4 | Temporary Construction Ingress/Egress Pad | All Sites | ISWQM | | 5 | Wheel Wash | All Sites | CN - 101 | | 6 | Silt Fence | Small Drainage areas | ISWQM | | 7 | Surface Roughening | Sites with Slopes that are to be stabilized with vegetation | ISWQM | | 8 | Temporary Seeding | Areas of bare Soil where additional work is not scheduled to be performed for a minimum of 15 days | ISWQM | | 9 | Mulching | Temporary surface stabilization | ISWQM | | 10 | Erosion Control Blanket (Surface) | Temporary surface stabilization, anchor for Mulch | ISWQM | | 11 | Temporary Diversion | Up-Slope and down-Slope sides of construction Site, above disturbed Slopes within Site | ISWQM | | 12 | Rock Check Dam | 2 acres maximum contributing Drainage area | ISWQM | | 13 | Temporary Slope Drain | Sites with cut or fill Slopes | ISWQM | | 14 | Geotextile Fabric Drop Inlet Protection | 1 acre maximum contributing Drainage area | ISWQM | | 15 | Insert (Basket) Curb Inlet
Protection | 1 acre maximum contributing Drainage area | ISWQM | | 16 | Temporary Sediment Trap | 5 acre maximum contributing Drainage area | ISWQM | | 17 | Temporary Dry Sediment
Basin | 30 acre maximum contributing Drainage area | ISWQM | | 18 | Dewatering Structures | Sites requiring dewatering | CN-102 | | 19 | Dust Control | All Sites | ISWQM | | 20 | Spill Prevention and Control | All Sites | CN - 103 | | 21 | Solid Waste Management | All Sites | CN - 104 | | 22 | Hazardous Waste Management | All Sites | CN - 105 | ^{*} See ISWQM Chapter 7 (2007 or latest version), unless otherwise noted. (http://www.in.gov/idem/Stormwater/) #### D. INDIVIDUAL LOT CONTROLS Although isolated individual lots or individual lots within a larger Development may not appear to contribute as much Sediment as the overall Development, the cumulative effect of lot Development is of concern. From the time construction on an individual lot begins, until the individual lot is stabilized, the builder must take steps to: - protect adjacent properties from Sedimentation - prevent mud/Sediment from depositing on the street - protect Drainageways from Erosion and Sedimentation - prevent Sediment laden water from entering storm Sewer Inlets. This can be accomplished using numerous Erosion and Sediment Control Measures. Erosion and Sediment Control Permit forms for both residential and commercial lots and detailed requirements, including a standard Erosion Control Plan for individual residential lots, are provided in Appendix B. The standard plan includes perimeter Silt Fence, stabilized construction entrance, curb Inlet protection, drop Inlet protection, stockpile containment, stabilized Drainage Swales, downspout extensions, temporary seeding and Mulching, and permanent vegetation. Every relevant measure should be installed at each individual lot Site. Construction sequence on individual lots should be as follows: - 1. Clearly delineate areas of trees, shrubs, and vegetation that are to be undisturbed. To prevent root damage, the areas delineated for tree protection should be at least the same diameter as the crown. - 2. Install perimeter Silt Fence at construction limits. Position the fence to intercept Runoff prior to entering Drainage Swales. - 3. Avoid disturbing Drainage Swales if vegetation is established. If Drainage Swales are bare, install Erosion control blankets or sod to immediately stabilize. - 4. Install drop Inlet protection for all Inlets on the property. - 5. Install curb Inlet protection, on both sides of the road, for all Inlets along property frontage and the along the frontage of adjacent lots. - 6. Install gravel construction entrance that extends from the street to the Building pad. - 7. Perform primary Grading operations. - 8. Contain Erosion from any Soil stockpiles created On-Site with Silt Fence around the base. - 9. Establish temporary seeding and straw Mulch on disturbed areas. - 10. Construct the home and install utilities. - 11. Concrete washout material must be properly contained within an appropriate practice and any waste material properly disposed of. - 12. Install downspout extenders once the roof and gutters have been constructed. Extenders should Outlet to a stabilized area. - 13. Re-seed any areas disturbed by construction and utilities installation with temporary seed mix within three (3) days of completion of disturbance. - 14. Grade the Site to final elevations. - 15. Install permanent seeding or sod. All Erosion and Sediment Control Measures must be properly maintained throughout construction. Temporary and permanent seeding should be watered as needed until established. For further information on individual lot Erosion and Sediment control, please see the "Required Stormwater Controls on Individual Building Lots" in Appendix B and also the IDNR, Division of Soil Conservation's pamphlet titled "Erosion and Sediment control for Individual Building Sites." #### E. CONSTRUCTION SITE RUNOFF CONTROL PROGRAM #### Background The City of Greenwood regulates Grading, excavation or other activities that disturb topsoil and vegetation and have the potential to generate polluted storm water Runoff. Activities of this nature must receive prior approval from the City and must be performed in accordance with Erosion and Sediment control practices approved by the City and the state of Indiana. [GMC Sec. 9-160(b)(1)]. State of Indiana requirements are found in the
Indiana Administrative Code, Title 327, Article 15, Section 5. These requirements do not apply to agricultural or forest harvesting activities. Detailed information and forms can be found on the IDEM's "Rule 5" website. #### **Procedures and Requirements** Project Sites that are less than one (1) acre and are not part of a Larger Common Plan of Development shall comply with the following procedures: - Submit for review and approval by the City a plan of the proposed improvements and the Project Site. [GMC Secs. 9-157(d), 9-161(d)]. The plan should include detailed information about the proposed Erosion and Sediment Control Measures. - Implement the approved Erosion and Sediment Control Measures and ensure they remain functional until the construction or Grading activities are complete. - Remove Erosion/Sediment control devices and re-establish vegetation on all disturbed areas. Project Sites that are one (1) acre or larger, or part of a common plan of Development that is one (1) acre or larger, must comply with the following procedures: - The Project Site Owner or his representative must become familiar with, and comply with, the requirements of Indiana Department of Environmental Management's (IDEM's) "Rule 5" (327 IAC 15-5). - Submit to the City of Greenwood five (5) copies of a Storm Water Pollution Prevention Plan (SWPPP) that complies with current IDEM "Rule 5" guidelines and the Stormwater Management Ordinance. [GMC Secs. 9-157(c), 9-161(c)]. This will typically be done as part of the Development plan review process. The SWPPP shall be submitted with the Site Development application. - Meet with the City of Greenwood Technical Review Committee to discuss the proposed project and review comments by City staff. - If the project drains directly into a Drainage system regulated by the Johnson County Surveyor, approval from the Johnson County Surveyor and Drainage Board also will be required. - Prior to construction or Grading operations, a pre-construction meeting must be held. The Site owner's representative must coordinate this meeting with the Construction Site Inspector. The Site owner's representative must comply with the 48-hour advanced notification requirement in IDEM's "Rule 5." A copy of the IDEM Notice of Intent (NOI) also must be provided to the City of Greenwood's Construction Site Inspector no less than 48 hours prior to beginning construction or Site Grading. A notice in compliance with 327 IAC 15-5-7 (b)(6) must be posted at the job Site entrance and maintained throughout the duration of the project. The items to be discussed at the pre-construction meeting should, at a minimum, include the following: - a) Name and contact information for the City's Site inspector, the Site owner's construction manager, and the Site owner's representative responsible for construction Site Runoff control measures and notifications - b) Start date for construction or Grading activities - c) Estimated completion date and post-construction stabilization requirements - d) IDEM notification requirements (NOI, Notice of Termination (NOT), newspaper publication, etc.) - e) Contents of approved Storm Water Pollution Prevention Plan - f) Enforcement measures - g) Inspection and maintenance of Erosion/Sediment control devices by owner's representative, including accessibility of records - h) Temporary seeding and stabilization requirements prior to project completion At the completion of construction activities, a Notice of Termination must be issued and termination procedures described in 327 IAC 15-5-8 must be followed. ## **Chapter Nine** # POST-CONSTRUCTION STORMWATER QUALITY MANAGEMENT STANDARDS #### A. INTRODUCTION It is recognized that developed areas, as compared to undeveloped areas, generally have increased Imperviousness, decreased Infiltration rates, increased Runoff rates, and increased concentrations of pollutants such as fertilizers, herbicides, greases, oil, salts and other pollutants. As new Development and Redevelopment continues within the boundaries of the Stormwater Management District of Greenwood, measures must be taken to intercept and filter pollutants from Stormwater Runoff prior to reaching regional creeks, Streams, and rivers. GMC Section 9-158 requires the implementation of Stormwater Quality management measures post-construction. Through the use of appropriate Best Management Practices (BMPs), Stormwater Runoff will be filtered and harmful amounts of Sediment, Nutrients, and contaminants will be removed. It is also recognized that another major source of pollution in many Indiana Streams, including those within the Greenwood Stormwater Management District, is the Streambank Erosion associated with urbanizing Watersheds. Stream Channels develop their shape in response to the volume and rate of Runoff that they receive from their contributing Watersheds. Research has shown that in hydrologically stable Watersheds, the Stream flow responsible for most of the shaping of the Channel (called the bankfull flow) occurs between every one to two years. When land is developed, the volume and rate of Runoff from that land increases for these comparatively small Flooding events that are not normally addressed by the Detention practices and the Stream Channel will adapt by changing its shape. As the Stream Channel works to reach a new stable shape, excess Erosion occurs. As new Development and Redevelopment continues within the boundaries of the Greenwood Stormwater Management District, measures must be taken to minimize the impact of such Development or Redevelopment on Streambank Erosion. Through the use of appropriate Best Management Practices (BMPs), the volume and rate of Runoff for Channel-forming flows will be reduced in an attempt to minimize increased Streambank Erosion in the Receiving Streams and Channels. Requirements of the Ordinance and this Technical Standards Manual with regards to the Channel protection and Water Quality protection can be satisfied through a variety of methods that can be broadly categorized under two general approaches: - 1. Conventional Approach - 2. Low Impact Development (LID) Approach This Chapter establishes minimum standards for the selection and design of post-construction Water Quality and Channel protection BMPs. The information provided in this Chapter establishes performance criteria for Stormwater Quality management and procedures to be followed when preparing a BMP plan for compliance. Post-construction BMPs must be sized to treat the Channel protection volume (CPv), Water Quality volume (WQv), and for flow-through BMPs the Water Quality Discharge rate (Qwq). For the Conventional Approach, the methodology for calculating the CPv, WQv, and Qwq values is provided in Chapter 10. For the LID Approach, alternative methods of calculating these values are provided in Section F of this Chapter. #### B. POST-CONSTRUCTION BMPs PERFORMANCE CRITERIA Channel protection is typically achieved by matching the post-construction Runoff volume and rate to the pre-settlement (prior to any historical land conversion by man) condition for all Runoff events up to the bankfull flow. The bankfull flow in most Indiana Streams correlates with 1.5- to 2-year Flood event flow. However, due to difficulties in determining the pre-settlement conditions, the net control of Runoff resulting from a 1-year, 24-hour storm in proposed conditions (rather than the alternative method of determining increase in 2-year, 24-hour storm over presettlement conditions) is established as the City of Greenwood standard for Channel protection. The City of Greenwood has also established a minimum standard that the measurement of the effectiveness of the control of post-construction Stormwater Runoff quality will be based on removal of Floatables in Stormwater Runoff and treatment, to the maximum extent practicable, of all major pollutants of concern expected for the proposed land use and/or those identified in the Stormwater Pollution Prevention Plan for the Site (including, if applicable, those pollutants found to be the cause of the Receiving Stream to be listed in IDEM List of Impaired Waters) for the first inch of rainfall at the Site. The above-noted "maximum extent practicable" criterion is subject to a minimum of eighty percent (80%) removal of Total Suspended Solids (TSS). These requirements are adopted as the basis of the City's Stormwater Quality management program for all areas of the jurisdiction. For the purpose of these Technical Standards, the control of post-construction Stormwater Runoff quality is assumed satisfactory when the appropriate of number of pre-approved structural BMPs, tiered in accordance to the total Site disturbed area as shown below, are designed, installed, and operated in accordance with fact sheets provided in **Appendix D1**. | Total Property/Development Area* | Post-Construction BMP Requirement** | | |---|-------------------------------------|--| | Less than 10,000 sq. ft. | No BMP | | | At least 10,000 sq. ft. to less than one (1) acre | At least one (1) BMP | | | At least one (1) acre | Two (2) separate BMPs in series*** | | - * Measured as the total property area upon completion of all Development and/or increases in Development area at a given Site. - ** These BMPs are in addition to any pre-treatment that may be required for Hot Spots. - *** If the Channel Protection Volume is provided in the form of 100% Retention that is pretreated for Sedimentation by a Settling Basin (see Infiltration Basin Fact Sheet), then no additional BMPs are required. As noted above, unless the Channel Protection Volume or Water Quality Volume can be fully retained and infiltrated, a combination of at least two BMPs in series (each sized to handle Water Quality volume) is required for Sites with a disturbed area of at least one (1) acre, with the first BMP acting as a pretreatment measure to reduce pollutant concentrations within the
downstream, or secondary, BMP. A dual BMP provision provides a failsafe benefit should adverse conditions result in undue clogging or other potential BMP impairment. Only one of the required BMPs can be a proprietary Water Quality Device. In addition to BMPs needed to address TSS removal requirements, a minimum twenty-five (25) foot wide vegetative Filter Strip must be provided along the top-of-bank of all open Ditches having an upstream Drainage area of at least fifty (50) acres. #### C. POLLUTANTS OF CONCERN AFTER CONSTRUCTION STABILIZATION There are three major sources of pollutants for a stabilized construction Site: - Deposition of atmospheric material (including wind-eroded material and dust) - General urban pollution (thermal pollution, litter) - Pollutants associated with specific land uses It should be noted that some pollutants accumulate on Impervious surfaces. This accumulated material is then subject to being washed into Watercourses during Storm Events. It is for this reason that fish kills often occur during a rain event following a substantial rainless period. This is also the reason that the most hazardous driving conditions are realized after the initial onset of a Storm Event, when deposited oil has not yet washed into adjacent Conveyance systems. Post-construction pollutants of concern include: - **Sediment** is the major Pollutant of Concern during active construction. Natural Erosion processes are accelerated at a Project Site by the construction process for a number of reasons, including the loss of surface vegetation and compaction Damage to the Soil Structure itself, resulting in reduced Infiltration and increased surface Runoff. After the construction is completed, other chemicals that are released to surface waters from industrial and municipal Discharges and polluted Runoff from urban and agricultural areas continue to accumulate to harmful levels in Sediments. - Toxic chemicals from illegal dumping and poor storage and handling of materials. Industrial Sites pose the most highly variable source of this pollution due to the dependency of the specific process to the resulting pollution amounts and constituents. As during construction, these chemicals can pose acute (short-term) or chronic (long-term) risk to aquatic life, wildlife, and the general public. - **Bacteria** from illicit sanitary connections to storm Sewer systems, combined Sewers, leaking septic systems, wildlife, and domestic animal waste. Bacteria pathogens pose a direct health risk to humans and aquatic life. - Nutrients can be released from leaking septic systems or applied in the form of fertilizers. Golf courses, manicured landscapes, and agricultural sources are the primary land uses associated with excess fertilization. Excessive Nutrients in the local ecosystem are the source of algal blooms in ponds and lakes. These excessive Nutrients also lead to acceleration of the eutrophication process, reducing the usable lifespan of these water bodies. Nitrogen and phosphorous are the primary Nutrients of concern. - Oxygen demand (biological or chemical) can be impacted by chemicals transported on Sediment, by Nutrients, and other pollutants (such as toxic chemicals). Reduced levels of oxygen impair or destroy aquatic life. - Oils and hydrocarbons accumulate in streets from vehicles. They can also be associated with fueling stations and illicit dumping activities. Oils and hydrocarbons pose health risk to both aquatic and human health. - Litter, including Floatables, can result in a threat to aquatic life. The aesthetic impact can also reduce the quality of recreational use. - **Metals** can be associated with vehicular activity (including certain brake dusts), Buildings, construction material storage, and industrial activities. Metals are often toxic to aquatic life and threaten human health. - Chlorides (salts) are historically associated with deicing activities. Chlorides are toxic to native aquatic life (verses saltwater aquatic life). Communities should consider a combination or cinders or Sand to replace or supplement their deicing activities with chlorides. In addition, chloride stockpiles should remain covered. - Thermal effects can be introduced by the removal of shade provided by riparian trees, as well as Impervious Channel linings, such as concrete, which release stored heat to water passing over them. Other sources of elevated temperature include effluent from power plant and industrial activities. Thermal pollution can threaten aquatic Habitat, including fish species and beneficial water insects. Of particular concern are salmonoid Streams, due to the effect of thermal pollution on spawning for this particular species. #### D. WATER QUALITY CHARACTERISTICS BY LAND USE Direct Water Quality sampling is not generally required at this time under the Phase II provisions. However, Water Quality characteristics are strongly tied to land use. For the purpose of these standards, all proposed Developments and Redevelopments shall be assumed to involve increased levels of Floatables, TSS, TP, TN, and metals. Additional pollutants may also be expected at certain types of Developments and specific Sites, as identified in the Stormwater Pollution Prevention Plan for the Site (including, if applicable, those pollutants found to be the cause of the Receiving Stream to be listed in IDEM List of Impaired Waters). #### E. CONVENTIONAL APPROACH PROCEDURES The following procedures shall be followed according to the Conventional approach: #### **Step 1: Provide BMPs to address Channel Protection Volume** In a conventional approach, the receiving Channel is protected through retaining (when possible) or the extended Detention of the 1-year, 24-hour Storm Event on entire Site (disturbed and undisturbed) Tributary to each Outlet. The methodology for calculating the Channel Protection Volume (CPv) is according to that discussed in Chapter 10 of these Technical Standards. Both wet and dry extended Detention may be used so long as only ten percent (10%) of the maximum stored volume is left in the basin after thirty-six (36) hours from maximum storage time (or forty-eight (48) hours from the start of storm) and no more than forty percent (40%) of the maximum stored volume is released within the first twelve (12) hours. To ensure that adequate Detention volume is available within the facility over the years, the facility should be designed for long-term (a minimum of fifty (50) years) Sediment accumulation. If long-term Sediment accumulation cannot be adequately provided for in the pond, or if the pond is intended to provide Sediment control during the construction phase of the project, Forebays near Inlets can be included to help manage Sediment accumulation. Forebays do not require a hard maintenance surface and shall not be visibly disconnected from the pond by Riprap or other berm Structures. Since, by design, ninety percent (90%) of the original volume will be available within forty-eight (48) hours of start of each Storm Event (assumed to be about thirty-six (36) hours from when the Channel Protection pool is full), the volume in the pond associated with the Channel protection (CPv) may be assumed empty for the purpose of Peak Flow Detention analysis discussed in Chapter 7. In addition, the volume provided for Channel protection would also satisfy the Water Quality volume (WQv) requirement provided that the facility meets the design criteria in the fact sheet and additional pre-treatment and/or wetland fringe can be provided to assure the performance criteria noted in Section B of this Chapter are met. #### **Step 2: Provide BMPs to address Water Quality Management** When the Channel protection volume is controlled with BMPs that also remove pollutants of concern, often no additional calculation or BMP implementation is necessary. If the Channel protection volume is not controlled through practices that also remove pollutants of concern, additional BMPs will be required. The City has designated a number of pre-approved BMP methods (listed in **Tables 9-1 through 9-6**) to be used alone or in combination to achieve the Stormwater Quality performance criteria noted in Section B of this Chapter for Runoff generated from up to first inch of rainfall on the entire Site (disturbed and undisturbed) Tributary to each Outlet. Details regarding the applicability and design of these pre-approved BMPs, including the effectiveness of these BMPs in treating pollutants of concern (including, if applicable, those pollutants found to be the cause of the Receiving Stream to be listed in IDEM List of Impaired Waters), are contained within fact sheets presented in **Appendix D1**. Additional information on recommended plant lists and recommended materials used for construction of Stormwater BMPs are provided in **Appendix D2** and **Appendix D3**, respectively. Innovative BMPs, including, but not limited to, BMPs not previously accepted by the City, must be certified by a Professional Engineer licensed in State of Indiana and approved through the City. ASTM standard methods must be followed when verifying performance of new measures. New BMPs, individually or in combination, must meet the performance criteria noted in Section B of this Chapter, including the capture and removal of Floatables. In order to be considered by the City, innovative BMPs must have a low to medium maintenance requirement. Testing to establish the pollutant removal rate must be conducted by an independent testing facility, not the BMP manufacturer. The accepted design flow rate for a Water Quality Device shall be the flow value at which the claimed removal rate for each pollutant is equaled or exceeded based on the unit's efficiency curve (flow rate versus removal rate graph). Note that a single BMP measure may not be adequate to achieve the Water Quality requirements (as noted above) for a project. It is for this reason that a "treatment train," a number of BMPs in series,
is often required for a project. The pollutant removal efficiency of a number of BMPs in series may be determined from the following formula: $$E_{\text{series}} = 1 - (1-E_1)(1-E_2)(1-E_3)...$$ where. $E_{\text{series}} = \text{Removal Efficiency of the BMP series combined (in decimal form)}$ $E_1, E_2, E_3, \dots = \text{Removal Efficiency of Units 1,2,3, ..., respectively (in decimal form)}$ **TABLE 9-1 Pre-approved Post-Construction BMPs for Conventional Approach** | BMP ^A | Typical % TSS
Removal
Efficiency ^B | Maintenance Easement Requirements | |-----------------------------|---|--| | Bioretention | 90 ^C | 25 feet wide along the perimeter | | Constructed Wetland | 67 ^C | 25 feet wide along the outer
perimeter of Forebay & 30 feet wide
along centerline of Outlet | | Underground Detention | 0_{D} | 20 feet wide strip from access
easement to tank's access shaft & 30
feet wide along centerline of Inlet and
Outlet | | Extended Detention/Dry Pond | 0_{D} | 25 feet wide along the outer perimeter of Forebay & 30 feet wide along centerline of Outlet | | Infiltration Basin | 87 | 25 feet wide along the perimeter | | Infiltration Trench | 90 ^C | 25 feet wide along the perimeter | | Constructed (Sand) Filter | 70 ^C | 25 feet wide along the perimeter | | Water Quality Device | VARIES ^E | 20 feet wide strip from access easement to chamber's access shaft | | Vegetated Filter Strip | 78 ^C | 25 feet wide along the length on the pavement side | | Vegetated Swale | 81 ^C | 25 feet wide along the top of bank on one side | | Wet Ponds/Retention Basin | 0_{D} | 20 feet wide along the pond's perimeter as well as 25 feet wide along the outer perimeter of Forebay (if provided) & 30 feet wide along centerline of Outlet | #### Notes: - A. Detailed specifications for these BMPs are provided in the fact sheets contained in Appendix D1. - B. Removal rates shown are based on typical results. Unless otherwise shown, data extracted by CBBEL from various data sources. These rates are also dependent on proper installation and maintenance. The ultimate responsibility for determining whether additional measures must be taken to meet the Ordinance requirements for Site-specific conditions rests with the applicant. - C. Based on IDEM Stormwater Quality Manual, 2007. - D. The City of Greenwood does not allow these BMPs for primary Stormwater Quality control. - E. The removal rate for this category varies widely between various models and manufacturers. The acceptable treatment rate for these devices shall be based on that currently certified by the New Jersey Department of Environmental Protection (NJDEP), subject to approval by Stormwater Superintendent. Such systems must remove all oil and floatable debris up to, and including, the Qwq calculated for each project. NJDEP-certified removal rates for various manufacturers are provided at http://www.nj.gov/dep/stormwater/treatment.html, with the treatment flow rate/design capacity information per unit provided at NJCAT website (http://www.njcat.org/verification-process/technology-verification-database.html). #### F. LOW IMPACT DEVELOPMENT (LID) APPROACH PROCEDURES Low Impact Development (LID) Stormwater management design approaches are fundamentally different from conventional design approaches and challenge traditional thinking regarding Development standards, Watershed protection, and public participation. LID combines fundamental hydrologic concepts with many of today's common Stormwater strategies, practices, and techniques to reshape Development patterns in a way that maintains natural Watershed hydrologic functions. The City has a user fee system based on Imperviousness, and the utilization of LID approach may result in a reduced Stormwater user fee for non-residential lots by reducing overall Imperviousness of a lot. The five principles of LID are: - a) Conservation of existing natural and topographic features; - b) Minimization of land clearing and Impervious surfaces; - c) Maintain or lengthen the pre-developed Time of Concentration; - d) Installation of integrated structural Best Management Practices; and - e) Use of pollution prevention measures and practices. Several methods for achieving the above principals are outlined below. In addition to methods described in these Technical Standards, several readily available references provide details on incorporating LID practices into Site Development. One of the most recent, comprehensive resources for incorporating LID practices into Site Development design is "Low Impact Development Manual for Michigan: A Design Guide for Implementers and Reviewers" available online at www.semcog.org/LowImpactDevelopment.aspx. The noted resource was used extensively for the development of LID section in this Standards Manual. The following steps shall be followed for the LID approach: #### **Step 1: Minimize Disturbed Areas and Protect Sensitive Areas** - Map sensitive areas such as Waterbodies, Floodplains, and natural flow paths. Identify hydrologic Soil types on the maps. Show elevations and identify critical Slopes of fifteen percent (15%) to twenty-five percent (25%) and above twenty-five percent (25%). Show areas of known contamination. Also show existing Structures and infrastructure. - Determine the total area of Impervious surface existing prior to Development. - Note the seasonal high Groundwater level. - Designate sensitive areas that are proposed to be protected as part of the proposed layout. - Lay out the proposed Development, minimizing disturbance and avoiding the sensitive areas. - Utilize the non-structural BMPs listed in **Table 9-2** to properly protect sensitive areas so they maintain their pre- Development state and Runoff characteristics. Fact Sheets for these BMPs are provided in **Appendix D1**. TABLE 9-2 Pre-approved BMPs with Treatment Area Reduction Recognitions for LID Approach | BMP ^A | Runoff Reduction Recognition ^B | | | | | |-------------------------------|---|--|--|--|--| | Protect Sensitive Areas | Area (acres complying with the requirements of this BMP) can be subtracted from Site Development area for Channel Protection Volume and Water Quality Volume/Rate calculations. | | | | | | Protect Riparian Buffers | Area (acres complying with the requirements of this BMP) can be subtracted from Site Development area for Channel Protection Volume and Water Quality Volume/Rate calculations. | | | | | | Minimize Total Disturbed Area | Area (acres complying with the requirements of this BMP) can be subtracted from Site Development area for Channel Protection Volume and Water Quality Volume/Rate calculations. | | | | | | Reduce Impervious Surfaces | Area (acres complying with the requirements of this BMP) can be subtracted from Site Development area for Channel Protection Volume and Water Quality Volume/Rate calculations. | | | | | | Protect Natural Flow Pathways | Area (acres complying with the requirements of this BMP) can be subtracted from Site Development area for Channel Protection Volume and Water Quality Volume/Rate calculations. | | | | | | Cluster-Type Development | Area (undisturbed acres complying with the requirements of this BMP) can be subtracted from Site Development area for Channel Protection Volume and Water Quality Volume/Rate calculations. | | | | | Notes: - A. In using and crediting these BMPs, applicants must meet the review criteria located within the discussion of each BMP provided in Appendix D1. - B. If the LID track is pursued, reduced CNs (associated with pre-developed underlying Soil types instead of the normal requirement of assigning the post- Development CN according to the next lower Infiltration Soil group) for areas protected by these BMPs may be used for determining the post-developed Runoff rates and volumes for larger events (up to and including the 100-year event). See **Table 9-8**. - As shown in **Table 9-2**, when using the LID Approach, any area that is set aside and protected as described in those BMPs may be subtracted from Site Development area for purposes of determining Channel Protection Volume calculations and Water Quality volume/rate calculations. - In addition, for determining the 10-year and 100-year Runoff and Peak Discharges, the CN associated with the original, predevelopment Soil groups (instead of the normal requirement of assigning the post-Development CN according to the next lower Infiltration Soil group) may be used for these areas (see **Table 9-8**). • The Runoff reduction recognition only works with designs based on the Curve Number or CN method of analysis utilizing non-composite CN determination methods. #### **Step 2: Restore Disturbed Areas** - For the LID Approach, Runoff reduction recognitions are used in the design process to emphasize the use of BMPs that, when applied, restore/alter the disturbed area in a way that reduces the volume of Runoff from that area. - Runoff reduction recognition is provided for the five BMPs listed in **Table 9-3** because they enhance the response of a piece of land to a Storm Event rather than treat the Runoff that is generated. These BMPs are encouraged because they are relatively easy to implement over structural controls; they require little, if any, maintenance; and the land they are applied to remains open to other uses. - Runoff reduction recognition is
applied by reducing the default CN value so that the amount of Runoff generated from an event is reduced. - The Runoff reduction recognition only works with designs based on the CN method of analysis utilizing non-composite CN determination methods. - Fact sheets for these BMPs are provided in **Appendix D1**. TABLE 9-3 Pre-approved BMPs with Runoff Reduction Recognitions for Restoring Disturbed Areas as Part of LID Approach | BMP^{A} | Runoff Reduction Recognition ^B | |--|---| | Minimize Soil Compaction | Area (acres complying with the requirements of this | | William Ze Son Compaction | BMP) can be assigned a CN based on the Pre-developed | | | Soil group conditions instead of the normal requirement | | | of assigning the post-Development CN according to the | | | next lower Infiltration Soil group. | | Protection of Existing Trees within | Trees protected under the requirements of this BMP can | | disturbed areas (part of Protect Sensitive | be assigned a CN based on the Pre-developed Soil group | | Areas) | conditions at a rate of 800 square feet per tree instead of | | | the normal requirement of assigning post-Development | | | CN according to the next lower Infiltration Soil group for | | | the acres covered by the tree area. | | Soil Amendment and Restoration | Area (acres complying with the requirements of this | | | BMP) can be assigned a CN based on the Pre-developed | | | Soil group conditions instead of the normal requirement | | | of assigning the post-Development CN according to the | | | next lower Infiltration Soil group. | | Native Revegetation | Proposed trees and shrubs to be planted under the | | | requirements of this BMP can be assigned a CN based on | | | the Pre-developed Soil group conditions at a rate of 200 | | | square feet per tree and 25 square feet per shrub instead | | | of the normal requirement of assigning post-Development | | | CN according to the next lower Infiltration Soil group for | | Di i D CC D | the acres covered by the existing land use area. | | Riparian Buffer Restoration | Proposed trees and shrubs to be planted under the | | | requirements of this BMP can be assigned a CN based on | | | the Pre-developed Soil group conditions at a rate of 200 | | | square feet per tree and 25 square feet per shrub instead | | | of the normal requirement of assigning post-Development | | | CN according to the next lower Infiltration Soil group for | | | the acres covered by the existing land use area. | Notes: - A. In using and crediting these BMPs, applicants must meet the review criteria located within the discussion of each BMP provided in Appendix D1. - B. If the LID track is pursued, reduced CNs (associated with pre-developed underlying Soil types instead of the normal requirement of assigning the post- Development CN according to the next lower Infiltration Soil group) for areas covered by these BMPs may be used for determining the post-developed Runoff rates and volumes for larger events (up to and including the 100-year event). See **Table 9-8**. #### **Step 3: Minimize Imperviousness** • The BMPs listed in **Table 9-4** are designed to reduce the volume of Runoff from Hard Surfaces such as roads, sidewalks, parking areas, roofs, etc. For the LID Approach, Runoff reduction recognition is used to encourage these practices and recognize their Runoff reduction impacts. Fact Sheets for these BMPs are provided in **Appendix D1**. #### **TABLE 9-4** ### Pre-approved BMPs with Runoff Reduction Credits for Reducing Imperviousness as Part of LID Approach | BMP^{A} | Runoff Reduction Recognition ^B | |-----------------|--| | Porous Pavement | Area covered by Porous Pavement with a minimum of 8 inch washed aggregate base may be assigned a weighted CN value of 87 (instead of CN of 98 normally used for Impervious surfaces) for the purpose of Channel Protection Volume calculations. Use a weighted CN of 74 for the purpose of Water Quality Volume calculations, if needed. Note: If this BMP is specifically designed to provide permanent volume reduction through Infiltration or through providing Detention Storage within the aggregate void, the volume reduction recognition discussed in Step 5 should be pursued instead of the CN reduction recognition, assuming CN of 98. | | Vegetated Roof | Vegetated roofs are designed to reduce Runoff volumes. However, the volume reduction is highly dependent on the media and planting used, with the calculation methods very complex at times. In lieu of calculating the volume reduction benefits, the roof area with vegetated roof with a minimum media depth of 4 inches and a void ratio of 0.3 (as described in the fact sheet) may be assigned a weighted CN of 87 (instead of CN of 98 normally used for Impervious surfaces) for the purpose of Channel Protection Volume calculations. Use a weighted CN of 74 for the purpose of Water Quality Volume calculations, if needed. | Notes: - A. In using and crediting these BMPs, applicants must meet the review criteria located within the discussion of each BMP provided in Appendix D1. - B. If the LID track is pursued, reduced CNs for areas covered by these BMPs may be used for determining the post-developed Runoff rates and volumes for larger events (up to and including the 100-year event). See **Table 9-8** for weighted CN values used for such larger events. - Although Imperviousness reduction BMPs are encouraged throughout any new Development or Redevelopment, the Runoff reduction recognition may only be considered where the following conditions are met: - The BMP must be in the common areas and covered by an easement or other agreement that assigns ongoing responsibility for its maintenance. - o The BMP must be covered by a maintenance plan and agreement with assurances for the long-term availability of maintenance funds (such as funds held in a permanent escrow account) provided to the City in a form acceptable to the City's Finance and Legal Departments. #### Step 4: Calculate the amount of volume control needed for Channel protection - Determine the 1-year 24-hour rainfall from **Table 3-5**. - Delineate Sub-Basins in a manner that, at a minimum and to the extent possible, the Pervious and Impervious surfaces are in different Sub-Basins. - Determine the disturbed Drainage area for each Sub-Basin by subtracting the protected area determined in Step 1 from total contributing Drainage area. - Assign CN to each cover type and land use, assigning "credited CN" for areas treated in Steps 2 and 3 instead of normal post-Development CN that is determined based on the proposed land use and the next less infiltrating underlying Soil group, when applicable. Published pre-determined weighted CN values shall not be utilized for the LID Approach. This applies regardless of whether manual methods or computer modeling techniques are used. - Determine the total post-Development 1-year, 24-hour Runoff volume for the entire Site's disturbed areas through the use of acceptable computer models or manually as specified below. This is the net Channel Protection volume needing to be <u>permanently</u> removed by appropriate structural BMPs. - Ocomputer Model: Use acceptable computer models (listed in Chapter 3) to determine the total Runoff volume for the Site, utilizing 1-year, 24 hour rainfall depth with Soil Conservation Service (SCS) type 2 storm distribution, Drainage area, and CN determined above, according to the Soil Conservation Service (SCS) CN loss method along with SCS unitless Hydrograph methodology. - o Manual Calculation: If calculating manually, use the following formula: - Runoff Volume (ft³) for each cover type = $Qv \times 1/12 \times A$ Where ``` A = disturbed area of the particular cover type (ft^2) ``` Qv = Runoff Depth (in) = $(P - 0.2S)^2/(P + 0.8S)$ P = 1-Year, 24 Hr Rainfall (in) S = (1000/CN) - 10 • Sum the individual volumes to obtain the total post-Development Runoff volume for area to be managed. #### Step 5: <u>Provide Distributed Volume Reduction/Infiltration Practices</u> • Table 9-5 includes a list of the structural BMPs from potential BMPs that provide volume removal. Select and design structural BMPs that provide volume control to meet, when combined, the total net Channel protection volume determined in Step 4. Fact Sheets for these and other relevant post-construction structural BMPs are provided in Appendix D1. TABLE 9-5 Pre-approved Structural BMPs with Permanent Volume Reduction Recognitions for Channel Protection as Part of LID Approach | $\mathrm{BMP}^{\mathrm{A}}$ | Channel Protection Volume Runoff Reduction Recognition ^B | |---|---| | Infiltration Practices (Infiltration Basin, Subsurface Infiltration Bed, Infiltration Trench, and Dry Well) | Volume reduction is achieved by surface storage volume (if included in the design), subsurface volume (if included in the design), and
Infiltration volume as described in the fact sheet. If an Underdrain has to be used due to Soil conditions, no recognition is granted for the "Infiltration volume" portion. | | Bioretention | Volume reduction is achieved by surface storage volume,
Soil storage volume, and Infiltration bed volume as
described in the fact sheet. | | Vegetated Swale | Volume reduction is achieved by surface storage volume (if included in the design through inclusion of check Dams) and active Infiltration volume during the storm (when Infiltration is expressly designed for as a purpose) as described in the fact sheet. | Notes: - A. In using and crediting these BMPs, applicants must meet the review criteria located within the discussion of each BMP provided in Appendix D1. - B. If the LID Approach is pursued, the volume reduction provided by these BMPs may be recognized towards determining the post-developed Runoff rates and volumes for larger events (up to and including the 100-year event). See **Table 9-8** for extent of Runoff reduction recognition allowed for such larger events. - The volume reduction BMPs work well when they are placed in an appropriate setting. Please see "Applicability and Limitation" discussions in each Fact Sheet for best suited placement of BMP. In order to qualify for recognition, the BMPs must also meet all the following: - Be in the common areas and covered by an easement or other agreement that assigns responsibility for its maintenance. - O Be covered by a maintenance plan and agreement with assurances for the longterm availability of maintenance funds (such as funds held in a permanent escrow account) provided to the City in a form acceptable to the Controller and Corporation Counsel. - O Be constructed on undisturbed A or well-drained B Soils (B/D Soils do not qualify) or amended Soil with Underdrains, as needed. If Underdrains are used, the bottom elevations of the Underdrains should be above the seasonal High Water Table. Soil Infiltration testing protocol, provided in **Appendix D4**, must be followed to determine if Infiltration BMPs are suitable at a Site and to obtain the required data (such as Soil conditions and depth of seasonal High Water Table) for Infiltration design. - O Be constructed in an area where the depth of seasonal High Water Table and any bedrock is more than a minimum of two (2) feet (four (4) feet is desirable) from ground elevation. - Be constructed in a manner that any Infiltration Practices are adequately separated from Basement foundations (fifty (50) feet up gradient, ten (10) feet down gradient), On-Site septic systems/drainfields (one hundred (100) feet), wells (fifty (50) feet), and other Building elements that could be affected by Infiltration systems. - o Be constructed outside of any 1-year (Zone 1) or 5-year (Zone 2) time of travel areas to public water supply wells, as defined by a modeled wellfield delineation performed in compliance with 327 IAC 8-4.1. When such delineation is not available, said practice must be at least 3,000 feet from the nearest public water supply well (unless applicant can demonstrate that the proposed practice will have no impacts on the Water Quality of the water supply well). - o Final construction should be completed after the contributing Drainage area has been stabilized. - o Must contain Erosion-protection features at the inflow to prevent Scouring. - Must contain a maintenance area near the Inlet to collect large debris. Examples include small concrete aprons, Catch Basin inserts, or similar durable maintenance point. - When the LID Approach is being pursued in all other aspects of the design but Site limitations would not allow permanent volume reduction practices, Channel protection volume should, at a minimum and as Site limitations allow, be accommodated through distributed storage solutions noted in **Table 9-5** that also include Underdrains as described in the appropriate Fact Sheets so that at a minimum they can act as both extended Detention and filtration practices. - Calculation Methods for Recognizing Impacts of Distributed Storage on Overall Site's Peak Flow Detention Requirements: when all the stated conditions above are met for volume-reduction distributed Storage Practices noted in Table 9-5, total volume provided for Channel protection within distributed storage units (not to exceed the required Channel protection volume calculated in Step 4) may be credited towards the Site's overall Detention requirements for peak (10-year and 100-year) flow control (see **Table 9-8**). Several methods are available to account for the noted Runoff reduction recognition. A few common methods are listed below (other methods not noted below may also be used as appropriate): - Method 1: Assume that the <u>provided</u> CPv in the distributed storage units (not to exceed the <u>required</u> CPv calculated in Step 4) will be stored below the Detention pond's normal pool (below the lowest Outlet). To simulate this condition, all the volumes in the elevation-storage table are increased by the provided CPv, an additional table entry is made as the first row with an artificial lower elevation and with zero for storage, and the Reservoir's starting elevation is set at the noted artificial elevation. - Method 2: Utilize the "Divert" option of the hydrologic model used to compute the inflow to the pond to simulate the diversion (abstraction) of the <u>provided</u> CPv (not to exceed the <u>required</u> CPv calculated in Step 4) from the Detention pond inflow before the remaining Flood Hydrograph is routed through the Detention system. To accomplish this, the model should have capability to simulate diversion with a volume cap option. - Method 3: Explicitly model the distributed storage features as a network of storage and Conveyance units through the use of computer programs that can correctly model interconnected storage. #### Step 6: Provide Additional (as-needed) Extended Detention Practices • When the LID Approach is being pursued in all other aspects of the design but Site limitations would not allow adequate distributed volume reduction practices noted in Step 5 (with or without Underdrain), then a Constructed Wetland or a Wet-Bottom extended Detention Facility, along with incorporation of an appropriate wetland fringe, should be utilized as listed in **Table 9-6**. If designed properly, such a facility can be incorporated into a multi-purpose facility to control Channel protection volume, Water Quality volume, and 100-year Peak Flow rate. Note that since by design conditions of a Wet-Bottom extended Detention Facility, ninety percent (90%) of the original volume will be available within forty-eight (48) hours of each Storm Event (i.e., a maximum of thirty-six (36) hours from when the Channel protection pool is full), the volume in the pond associated with the Channel protection may be assumed empty for the purpose of Peak Flow Detention analysis discussed in Chapter 7 of these Standards (see **Table 9-8**). TABLE 9-6 Pre-approved BMPs with Additional, As-needed Extended Detention Runoff Reduction Recognitions for Channel Protection as Part of LID Approach | BMP^A | Runoff Reduction Recognition ^B | |---------------------------------|---| | Constructed Wetland | The volume of the supplementary extended Detention, in lieu of permanent volume reduction, is credited towards meeting Channel Protection Volume requirements so long as only 10% of the maximum stored volume is left in the basin after 36 hours from maximum storage time and no more than 40% from the maximum stored volume is released within the first 12 hours. | | Extended Detention Wet/Dry Pond | The volume of the supplementary extended Detention, in lieu of permanent volume reduction, is credited towards meeting Channel Protection Volume requirements so long as only 10% of the maximum stored volume is left in the basin after 36 hours from maximum storage time and no more than 40% from the maximum stored volume is released within the first 12 hours. | Notes: - A. In using and crediting these BMPs, applicants must meet the review criteria located within the discussion of each BMP provided in Appendix D1. - B. If the LID track is pursued, the volume reduction provided by these BMPs may be recognized towards determining the post-developed Runoff rates and volumes for larger events (up to and including the 100-year event). See **Table 9-8** for extent of Runoff reduction recognition allowed for such larger events. ## Step 7: <u>Determine Water Quality Volume and Provide, As-needed, Additional Water Quality BMPs</u> - The expected treatment of many BMPs applied to LID designs is based on removing solids. Many pollutants are attached to solids or are removed by similar treatment mechanisms. Therefore, removing solids can act as a surrogate for the expected removal of other particulate pollutants. Often multiple BMPs will be necessary to remove successively smaller particle sizes to achieve the highest level of treatment. - When the CPv is controlled with BMPs that also remove expected pollutants, often no additional calculation or BMP implementation is necessary. If the Channel protection volume is not controlled through practices that also remove expected pollutants, calculate the Water Quality volume that provides for the treatment of the first inch of rainfall on the Site's disturbed areas as discussed below. - The methodology for determining the design Water Quality volume or rate for the LID Approach is the same as that described for CPv calculation described in Step 4, except the rainfall depth for Water Quality will
be one (1) inch instead of the 1-year, 24-hour rainfall depth used for calculating the CPv. A few considerations specific to Water Quality Volume/Rate calculations are as follows: - Time of Concentration in the case of LID design is the time it takes a drop of water to move from the furthest point in the disturbed area to its Discharge from the disturbed area. - Computer Model: If using acceptable computer models, perform the same procedure as that performed for calculating CPv in Step 4, but for one (1) inch of rainfall depth. - o Manual Calculation: If calculating manually, use the following formula: - Runoff Volume (ft³) for each cover type = $Qv \times 1/12 \times A$ Where A = disturbed area of the particular cover type (ft²) $Qv = Runoff Depth (in) = (P - 0.2S)^2/(P + 0.8S)$ P = 1 inch S = (1000/CN) - 10 • Peak Runoff Rate $(ft^3/sec) = q_u \times A \times Qv \times 1/43,560$ Where A = disturbed area of the particular cover type (ft²) Qv = Runoff Depth (in) calculated in previous step $q_u = Unit \ Peak \ Discharge \ (cfs/mi^2/in), \ determined \ from \ TR-55 \ Exhibit \ 4-II$ - Sum the individual volumes and peak Runoff rates to obtain the total design post-Development Water Quality Runoff volume and rate. - O Determine the total post-Development Water Quality Runoff volume and rate for the entire Site's disturbed areas. These are the design post-Development Water Quality Runoff volume and rate needing to be treated. - Select BMPs from the list provided in **Table 9-1** that will meet the performance criteria noted in Section B of this Chapter. Often, multiple types of BMPs used in series will be required to provide adequate treatment. Design the BMPs in conjunction with any Detention control that is needed for peak rate control of larger Floods (100-year), if possible. #### **Step 8: Complete the LID Approach Utilization Summary Form** - As the final step of the LID Approach, a summary of non-structural and structural BMPs utilized, as part of the LID Approach, in the Site design of a particular Development Site is provided in **Table 9-7** and submitted as part of the permit request package. - The presence of **Table 9-7** in the submittal package and the information contained in the form would alert the plan reviewer that the LID Approach is being used to meet the post-construction Stormwater Quality requirements of the Site and that the overall Site design as well as Peak Discharge and Detention calculations should be reviewed with the impacts of LID Approach in mind. ### <u>Summary of Runoff Reduction Recognitions for Water Quality Volume, Channel Protection, and Peak Flow Control Detention Volume for LID approach</u> As discussed throughout this Section, to encourage LID approach for Stormwater management, Runoff reduction recognitions towards all three major Stormwater management requirements—Water Quality, Channel Protection, and Peak Runoff Detention—are associated with various BMPs as noted through the above eight-step process. These Runoff reduction recognitions are summarized in **Table 9-8**. ### TABLE 9-7 LID Approach Summary Checklist This checklist is a tool to allow both the regulatory agency and the Developer to reference various LID measures implemented within the Development in order to meet the Development's Post Construction Stormwater Management requirements. **Project Name: Engineer:** Developer: Total Site Area: Proposed Earth Disturbance Area: Existing Impervious Area: Pg # of Plan Pg # of Calculations LID Approach Step Total Surface Area (sf) of **Potential BMPs** LID LID Measure/BMP for LID Measure Measure Protect Sensitive Areas Protect Riparian Buffers Protect Natural Flow Pathways 1. Minimize Disturbed Areas Minimize Total Disturbed Area Reduce Impervious Surfaces Cluster-Type Development Minimize Soil Compaction Protect Trees in Disturbed Areas 2. Restore Disturbed Soil Amendment and/or Restoration Areas Native Revegetation Riparian Buffer Restoration Porous Pavement 3. Minimize Imperviousness Vegetated Roof 4. Determine Volume Control Needed for N/A (calculation step only) N/A **Channel Protection** Infiltration Practices* 5. Provide Distributed Retention/Infiltration **Bio-Retention** Practices Vegetated Swale 6. Additional (as-Constructed Wetland N/A needed) Extended Extended Detention Wet/Dry Pond N/A **Detention Practices** 7. Additional (as-Pre-approved BMPs noted in Table 8needed) Water N/A 1 for conventional method Quality BMPs Additional Flood Peak **Detention Pond** N/A Control (2yr-100yr) (wet/dry/underground) **Total Surface Area of LID Measures** sf **Proposed Final Impervious Surface Area** sf Percent of Total Site Area Covered by LID % Note: Not all LID measures are necessary or appropriate for every Site. It is imperative that proper Site assessments and due diligence is completed by the Developer and/or Engineer prior to design. ^{*:} Infiltration Practices include: Infiltration Basins, Subsurface Infiltration Beds or Trenches, and Dry Wells TABLE 9-8 Summary of Runoff Reduction Recognitions for Pre-approved BMPS Used in the LID Approach | Impleme
ntation DESCRIPTION | | POTENTIAL BMPS | RECOGNITION/CREDIT FOR POST
CALCU | RECOGNITION/CREDIT FOR WATER OUANTITY (DETENTION AND STORM | | | |--------------------------------------|---|--|---|--|---|--| | Order | DESCRIPTION | | WATER QUALITY VOLUME CHANNEL PROTECTION VOLUME | | DRAIN) CALCULATIONS | | | 1 | Protect Sensitive Areas Protect Riparian Buffers Minimize Disturbed Minimize Total Disturbed Area Protect Natural Flow Pathways Reduce Impervious Surfaces Cluster-Type Development | | Full recognition through allowing to use
"disturbed surface area" only for all
calculations | Full recognition through allowing to use "disturbed surface area" only for all calculations | Full recognition through allowing CN for the undisturbed, protected area to be calculated based on pre-developed underlying Soil types | | | 2 | Minimize Soil Compaction Protection of Existing Trees within disturbed areas (part of Minimize) | | Full recognition through allowing CN for the restored/protected area to be calculated based on pre-developed underlying Soil types | Full recognition through allowing CN for the restored/protected area to be calculated based on pre-developed underlying Soil types | Full recognition through allowing CN for the restored/protected area to be calculated based on pre-developed underlying Soil types | | | 3 | Minimize
Imperviousness | Porous Pavement | Full recognition of perviousness through allowing CN for the application area to be calculated based on a pre-set value (74 instead of 98) AND full recognition of the stored volume (if provided for in the design) and WQ treatment, if designed as a true Infiltration practice (no Underdrain/ or extended 24-48 hrs release) | Partial (weighted) recognition of perviousness through allowing CN for the application area to be calculated based on a pre-set value (87 instead of 98) AND full recognition of the stored volume (if provided for in the design), if designed as a true Infiltration practice (no Underdrain/ or extended 24-48 hrs release) | Partial (weighted) recognition of perviousness through allowing CN for the application area to be calculated based on pre-set values (89 for 10-year and 90 for 100-year calculations instead of using 98) and full recognition of the stored volume (if provided for in the design), on a case by case basis, treated as an underground Detention, up to Channel Protection Volume | | | | | Vegetated Roof | Full recognition of perviousness through
allowing CN for the application area to be
calculated based on a pre-set value (74 instead
of 98) AND full recognition of the stored
volume (if provided for in the design) and/or
WQ treatment if designed for | Partial (weighted) recognition of perviousness through allowing CN for the application area to be calculated based on a pre-set value (87 instead of 98) | Partial (weighted) recognition of perviousness
through allowing CN for the application area
to be calculated based on a pre-set value 89 for
10-year and 90 for 100-year calculations
instead of using 98) | | | Volume Basin, Subsurface Infiltratio | | Vegetated Swale | Full recognition of perviousness through
allowing CN for the application area to be
calculated based on cover type and underlying
Soil AND full recognition of the retained
volume (if provided for in the design) and/or
WQ treatment if designed for | Full recognition of retained volume if designed as true Infiltration practice (on appropriate Soil
and no Underdrain/ or extended 24-48 hrs release) | Limited recognition of retained volume (up to
the Channel Protection Volume) if designed as
true Infiltration practice (on appropriate Soil
and no Underdrain/ or extended 24-48 hrs
release) | | | 5 | Provide, As-needed,
Additional Extended
Detention Practices in
Common Areas | Constructed Wetland Extended Detention Wet/Dry Pond | full recognition of the stored volume (with
extended 24-48 hrs release) and/or WQ
treatment if designed for | Full Recognition of stored volume (with extended 24-48 hrs release) | Full Recognition of stored volume (with extended 24-48 hrs release) | | | 6 | Provide, As needed,
Additional Water
Quality BMPs | Pre-approved BMPs noted in
Table 8-1 for conventional
method | Full recognition of WQ treatment | N/A | N/A | | #### G. SPECIAL PROVISIONS FOR "HOT SPOT" LAND USES For all those projects involving land uses considered to be high pollutant producers or "Hot Spots" (including, but not limited to, vehicle service and maintenance facilities; vehicle salvage yards and recycling facilities; vehicle and equipment cleaning facilities; fleet storage areas for buses, trucks, etc.; industrial/commercial or any hazardous waste storage areas or areas that generate such wastes; industrial Sites; restaurants and convenience stores; any activity involving chemical mixing or loading/unloading; outdoor liquid container storage; public works storage areas; commercial container nurseries; and some high traffic retail uses characterized by frequent vehicle turnover), additional Water Quality requirements may be imposed by the City, regardless of the amount of land disturbed, in addition to those included in Water Quality criteria in order to remove potential pollutant loadings from entering either Groundwater or surface water systems. [GMC Sec. 9-158(a)]. These pre-treatment requirements are included in **Table 9-9** and **Table 9-10**. **TABLE 9-9 Pre-Treatment options for Stormwater Hot Spots** | Stormwater Hot Spots | Minimum Pre-Treatment Options | |--|-------------------------------| | Vehicle Maintenance and Repair Facilities | A, E, F, G | | Vehicle Fueling Stations | A, D, G | | Drive-through Restaurants, Pharmacies, Convenience Stores | B, C, D, I, K | | Outdoor Chemical Mixing or Handling | G, H | | Outdoor Storage of Liquids | G | | Commercial Nursery Operations | I, J, L | | Other Uses or Activities Designated by Appropriate Authority | As Required | **TABLE 9-10 Minimum Pre-Treatment Options** | | Minimum Pre-Treatment Options | | | | | |---|--|--|--|--|--| | Α | Oil/Water Separators / Hydrodynamic Separators | | | | | | В | Sediment Traps/Catch Basin Sumps | | | | | | С | Trash/Debris Collectors in Catch Basins | | | | | | D | Water Quality Inserts for Inlets | | | | | | Е | Use of Drip Pans and/or Dry Sweep Material under Vehicles/Equipment | | | | | | F | Use of Absorbent Devices to Reduce Liquid Releases | | | | | | G | Spill Prevention and Response Program | | | | | | Н | Diversion of Stormwater away from Potential Contamination Areas | | | | | | I | Vegetated Swales/Filter Strips | | | | | | J | Constructed Wetlands | | | | | | K | Stormwater Filters (Sand, Peat, Compost, etc.) | | | | | | L | Stormwater Collection and Reuse (especially for irrigation) | | | | | | M | BMPs that are a part of a Stormwater Pollution Prevention Plan(SWPPP) under a NPDES Permit | | | | | #### H. CONSTRUCTION SEQUENCING CONSIDERATIONS BMPs noted in this chapter refer to post-construction BMPs, which continue to treat Stormwater after construction has been completed and the Site has been stabilized. Installing certain BMPs, such as bioretention areas and Sand filters, prior to stabilization can cause failure of the measure due to clogging from Sediment. If such BMPs are installed prior to Site stabilization, they should be protected by traditional Erosion control measures. In those instances, the construction sequence must require that the pond is cleaned out with pertinent elevations and storage and treatment Capacities reestablished as noted in the accepted Stormwater management plan. #### I. INSCEPTION AND MAINTENANCE REQUIREMENTS Subsequent to successful installation of post-construction BMPs, they must be inspected and maintained regularly in accordance with the Operation and Maintenance Manual required to be prepared for each BMP. An operations and maintenance (O&M) manual for all private infrastructure, including, but not limited to, pipes, ponds, Ditches, and BMPs (when required), shall be submitted for the final plan approval and permit process. The manual will become a maintenance guide for the Drainage infrastructure once Development is complete. The final O&M manual will be provided to the City in both hard copy and digital formats. The O&M manual maintenance agreement along with a Site map showing the BMP locations shall be recorded with the final plat in the Office of the Johnson County Recorder and shall bind subsequent property owners. The O&M manual will include the following: - 1. Owner name, address, business phone number, home phone number, email address, cellular phone number, pager number; - 2. Site drawings (8½" by 11" or 11" by 17"), showing both plan and Cross-Section views, showing the infrastructure and applicable features, including dimensions, easements, Outlet works, Forebays, signage, etc., as well as an overall Site map of the Development showing all Structures; - 3. Guidance on owner-required periodic inspections; - 4. Requirement of owner to perform maintenance as specified as a result of inspection by the City's agent(s); - 5. Guidance on routine maintenance, including mowing, litter removal, woody growth removal, signage, etc.; - 6. Guidance on remedial maintenance; such as Inlet replacement, Outlet works maintenance, etc.; - 7. Guidance on Sediment and trash removal, both narrative and graphical, describing when Sediment removal should occur in order to insure that BMPs and other infrastructure remain effective as Water Quality and/or quantity control devices; - 8. A statement that the City's representatives have the right to enter the property to inspect the infrastructure; - 9. A tabular schedule showing inspection and maintenance requirements; and - 10. Identification of the property owner as the party responsible for all maintenance, including cost. Inspection checklists for various types of BMPs are provided in **Appendix D5**. A sample Stormwater Management Maintenance Agreement is provided in **Appendix D6**. This agreement will need to be customized, signed, notarized, and recorded within the property's chain of title and shall serve as a covenant running with the land. #### REFERENCES Southeast Michigan Council of Governments (SEMCOG), Low Impact Development Manual for Michigan: A Design Guide for Implementers and Reviewers, Detroit, Michigan, 2008. ## **Chapter Ten** # METHODOLOGY FOR DETERMINATION OF REQUIRED SIZING OF BMPs #### A. INTRODUCTION To effectuate the purposes and goals of GMC Section 9-158, which requires the implementation of Stormwater Quality management measures post-construction, this Chapter describes the acceptable methods for calculating Channel Protection Volume, Water Quality Volume, and Flow-Through BMP Flow Rate associated with Conventional Stormwater Management Approach (acceptable methods associated with the LID Stormwater Management Approach are discussed in Chapter 9). Channel Protection is achieved through Retention or extended Detention of Runoff volume for 1-year, 24-hour Storm Event. Structural Water Quality treatment is achieved by treating the first inch of rainfall, either through Retention/Detention BMPs or by Flow-through BMPs. Detention/Retention BMPs impound (pond) the Runoff to be treated, while flow-through BMPs treat the Runoff through some form of filtration process. #### B. RETENTION/DETENTION BMP SIZING #### 1. Channel Protection Volume Channel Protection Detention/Retention BMPs must be designed to store the Channel protection volume. The Channel protection volume, CPv, is the storage needed to retain or detain the Runoff to the Receiving Stream from the 1-year, 24-hour rainfall. The methodology for calculating the Channel Protection Volume (CPv) for each of Site's final Outlets using computer models or manual calculation is as follows: - Computer Model: Use acceptable computer models (listed in Chapter 3) to determine the total Runoff volume for the Site contributing to each Site's Outlet, utilizing 1-year, 24 hour rainfall depth with Soil Conservation Service (SCS) type 2 storm distribution, Drainage area, and the composite CN calculated for the Site, according to the Soil Conservation Service (SCS) CN loss method along with SCS unitless Hydrograph methodology. - Manual Calculation: If calculating manually, use the following formula: $$CPv (ft^3) = Qv \times 1/12 \times A$$ Where A = total post-construction Site area contributory to each Outlet (ft²) $$Qv = Runoff Depth (in) = (P - 0.2S)^2/(P + 0.8S)$$ P = 1-Year, 24 Hr Rainfall (in) S = (1000/CN) - 10 #### 2. Water Quality Volume Water Quality Detention BMPs must be designed to store the Water Quality volume for treatment. The Water Quality volume, WQv, is the storage needed to capture and treat the Runoff from the first one inch of rainfall. The Water Quality volume is equivalent to one inch of rainfall multiplied by the volumetric Runoff Coefficient (Rv) multiplied by the Site area. A calculation methodology similar to that described for the Channel protection volume may be utilized, except that the rainfall depth (P) will be equal to one (1), instead of the 1-year, 24-hour depth. Alternatively, a simpler methodology may be used for calculation of WQv as follows: $$WQv = (P) (Rv) (A) / 12$$ where: WQv = Water Quality
volume for each Site's Outlet (Acre-Feet) P = one (1) inch Rv = volumetric Runoff Coefficient A = area in acres The volumetric Runoff Coefficient is a measure of Imperviousness for the contributing area, and is calculated as: $$Rv = 0.05 + 0.009(I)$$ Where: I is the percent Impervious cover For example, a proposed commercial Site will be designed to drain to three different Outlets, with the following Drainage areas and Impervious percentages: | Subarea ID | On-Site | Impervious Area | Off-Site | | |------------|-------------------|-----------------|-------------------|--| | | Contributing Area | % | Contributing Area | | | | (acres) | | (acres) | | | A | 7.5 | 80 | 0.0 | | | В | 4.3 | 75 | 0.0 | | | C | 6.0 | 77 | 0.0 | | Calculating the volumetric Runoff Coefficient for Subareas A, B and C yields: Rv (Subarea A) = $$0.05+0.009(80) = 0.77$$ ``` Rv (Subarea B) = 0.05+0.009(75) = 0.73 Rv (Subarea C) = 0.05+0.009(77) = 0.74 ``` The Water Quality volumes for these three areas are then calculated as: ``` WQv (Subarea A) = (1")(Rv)(A)/12 = 0.77(7.5)/12 = 0.47 Acre-Feet WQv (Subarea B) = 0.73(4.3)/12 = 0.26 Acre-Feet WQv (Subarea C) = 0.74(6.0)/12 = 0.37 Acre-Feet ``` Note that this example assumed no Off-Site sources of Discharge through the Water Quality BMPs. If there were significant sources of Off-Site Runoff (sometimes called runon for upstream areas Draining to the Site), the designer would have the option of bypassing Off-Site Runoff around the On-Site systems, or the Detention BMP should be sized to treat the On-Site Channel protection volume plus the Water Quality volume for the Off-Site sources. #### C. FLOW THROUGH BMP SIZING Flow-through BMPs are designed to treat Runoff at a peak design flow rate through the system. Examples of flow through BMPs include Catch Basin inserts, Sand filters, and Grassed Channels. Another flow through BMP which is gaining popularity is a hydrodynamic separator or other similar type of device discussed in the Water Quality Devices Fact Sheet (Appendix **D1**). Hydrodynamic separators are proprietary, and usually include an oil-water separation component. Hydrodynamic separators (i.e. Gravity or Manufactured Stormwater Quality Units) shall be a manufactured system currently certified by the New Jersey Department of Environmental Protection (NJDEP), subject to approval by Stormwater Superintendent. Such systems must remove all oil and floatable debris up to, and including, the Qwq calculated for each project. The manufactured system must also provide complete and unobstructed access to the entire bottom of the system from grade level for ease of maintenance. Both offline and internal bypass models are accepted. However, the system must be located upstream of detention facilities. NJDEP-certified removal rates for various manufacturers are provided at http://www.nj.gov/dep/stormwater/treatment.html, with the treatment flow rate/design capacity information per unit provided at NJCAT website (http://www.njcat.org/verificationprocess/technology-verification-database.html). Note that the NJDEP-certified manufactured system treatment rates for units not equipped with special filters reflect a standard 50% TSS reduction at the listed certified treatment flow rate. Therefore, to achieve the 80% TSS removal requirement, either a treatment train must be used or a filtration system must be added in accordance to NJDEP methodology. The following procedure should be used to estimate Peak Discharges for flow through BMPs (adopted from Maryland, 2000). It relies on the volume of Runoff computed using the Small Storm Hydrology Method (Pitt, 1994) and utilizes the NRCS, TR-55 Method. Using the WQv methodology, a corresponding Curve Number (CNwq) is computed utilizing the following equation: $$CNwq = \frac{1000}{\left[10 + 5P + 10Qa - 10\sqrt{Qa^2 + 1.25QaP}\right]}$$ where: CNwq = Curve Number for Water Quality Storm Event P = 1" (rainfall for Water Quality Storm Event) Qa = Runoff volume, in inches = 1"×Rv Rv=volumetric Runoff Coefficient (see previous section) Due to the complexity of the above equation, the Water Quality Curve Number is represented as a function of percent Imperviousness in **Figure 10-1**. The Water Quality Curve Number, CNwq, is then used in conjunction with the standard calculated time-of-concentration, tc, and Drainage area as the basis input for TR-55 calculations. Using the SCS Type II distribution for 1 inch of rainfall in 24-hours, the Water Quality treatment rate, Qwq, can then be calculated. #### REFERENCES - 1. Maryland Stormwater Design Manual, Volume II, Appendix D.10, 2000 - 2. Pitt, R., 1994, Small Storm Hydrology. University of Alabama Birmingham. Unpublished manuscript. Presented at design of Stormwater Quality management practices. Madison, WI, May 17-19 1994. - 3. Schueler, T.R. and R.A. Claytor, 1996, Design of Stormwater Filter Systems. Center for Watershed Protection, Silver Spring, MD. - 4. United States Department of Agriculture (USDA), 1986. Urban Hydrology for Small Watersheds. Soil Conservation Service, Technical Release 55 (TR-55). ## **Chapter Eleven** ### MISCELLANEOUS REQUIREMENTS #### A. GRADING AND BUILDING PAD ELEVATIONS GMC Sec. 9-160(a) requires that all Grading and Building pad elevations comply with the standards set forth in this Technical Manual. Maximum yard Slopes are 3:1 where Soil has been disturbed during construction processes. Finished floor elevation must be no less than six (6) inches above finished Grade around the Building. Also, the Building's lowest entry elevation that is adjacent to and facing a road shall be a minimum of fifteen (15) inches above the road centerline elevation unless a written variance is granted by the City pursuant to the procedures set forth in GMC Sec. 9-162. All lots shall have a minimum Flood Protection Grade shown on the secondary plat. Minimum Flood Protection Grade of all Structures fronting a pond or open Ditch shall be no less than two (2) feet above any adjacent 100-year local or regional Flood Elevations, whichever is greater, for all windows, doors, unsealed pipe entrances, window well rim elevations, and any other Structure member where Floodwaters can enter a Building. The Lowest Adjacent Grade for residential, institutional, commercial, or industrial Buildings, whether shown or not on a FEMA or IDNR designated Floodplain, shall have two (2) feet of Freeboard above the Flooding source's 100-year Flood Elevation under proposed conditions, unless the Flooding source is a rear-yard Swale. When the Flooding source is a rear-yard Swale, the Lowest Adjacent Grade for residential, institutional, commercial, or industrial Buildings shall have 2 feet of Freeboard above the 100-year Flood Elevation under proposed conditions. The Lowest Adjacent Grade requirements for Buildings adjacent to emergency overflow paths and ponds are as discussed in Chapters 5 and 7 of these standards. #### B. LOT DRAINAGE All lots shall be laid out so as to provide Drainage away from all Buildings, and individual lot Drainage shall be coordinated with the general Stormwater Drainage pattern for the Subdivision. Drainage shall be designed so as to avoid the concentration of Stormwater Runoff from a lot onto adjacent lots. [GMC Sec. 9-155(e)(1)]. Each lot owner shall maintain the lot Grade, as it relates to Stormwater Drainage, in compliance with the approved Construction Plans. No part of the lot area of any lot may contain land that is utilized as Retention or Detention Facility or Drainage pond, contains a Watercourse, or is within a Floodway. [GMC Sec. 9-155(e)(2)]. Where a Watercourse separates the buildable area of the lot from the street by which it has access, provisions shall be made for the installation of a Culvert or other appropriate Structure, as approved by the City. If a Subdivision contains an existing or to be developed Waterbody, Watercourse, or portion thereof, appropriate documentary assurances acceptable to the City shall be provided for the maintenance of such Waterbody or Watercourse. It shall be the property owners' responsibility to maintain the natural features on their lots and to take preventive measures against any and all Erosion and/or deterioration of natural or manmade features on their lots. [GMC Sec. 9-160(b)(2)]. ### C. ACCEPTABLE OUTLET AND ADJOINING PROPERTY IMPACTS REQUIREMENTS Design and construction of the Stormwater Facility shall provide for the Discharge of the Stormwater Runoff from Off-Site Land Areas as well as the Stormwater from the area being developed (On-Site land areas) to an acceptable Outlet(s) (as determined by the City) having Capacity to receive upstream (Off-Site) and On-Site Drainage. A Roadside Ditch is generally not considered an adequate Outlet. The flow path from the Development Outfall(s) to a Regulated Drain, a City storm Drain, or natural Watercourse (as determined or approved by the City) shall be provided on an exhibit that includes topographic information. Any existing Field Tile encountered during the construction shall also be incorporated into the proposed Stormwater Drainage system or tied to an acceptable Outlet. Where the Outfall from the Stormwater Drainage system of any Development flows through real estate owned by others prior to reaching a Regulated Drain or Watercourse, no approval shall be granted for such Drainage system without a recorded easement for such real estate. In addition, no activities conducted as part of the Development shall be allowed to obstruct the free flow of Floodwaters from an upstream property. If an adequate Outlet is not located on Site, then Off-Site Drainage improvements may be required. Those improvements may include, but are not limited to, extending storm Sewers, clearing, dredging and/or removal of obstructions to Open Drains or natural water courses, and the removal or replacement of undersized Culvert pipes as required by the City. The property owner is responsible for all costs associated with the
implementation of necessary Off-Site Drainage improvements. #### D. NO NET LOSS FLOODPLAIN STORAGE REQUIREMENTS Floodplains exist adjacent to all natural and man-made Streams, regardless of contributing Drainage area or whether they have been previously identified or mapped. Due to potential impacts of Floodplain loss on Peak Flows in Streams and on the Environment, disturbance to Floodplains should be avoided. When the avoidance of Floodplain disturbance is not practical, the natural functions of the Floodplain should be preserved to the extent possible. In an attempt to strike a balance between the legitimate need for economic development within the Stormwater Management District and the need to preserve the natural functions of Floodplains to the extent possible, compensatory excavation equivalent to the Floodplain storage lost shall be required for all activities within Floodplain of Streams located in the City where Drainage area of the Stream is equal to or larger than one (1) square mile at the project location. [GMC Sec. 9- 156(e)]. The City may alter the compensation ratio, based on extenuating circumstances, for a specific project. #### General Requirements Note that by definition, Compensatory Storage is the replacement of the existing Floodplain and, in rare exceptions, the Floodway storage lost due to fill. Compensatory Storage is required when a portion of the Floodplain is filled, occupied by a Structure, or when as a result of a project a change in the Channel Hydraulics occurs that reduces the existing available Floodplain storage. [GMC Sec. 9-156(e)]. Compensatory Storage must: - O Be provided regardless of whether the Flooding source is mapped or whether Flood Elevations are published or not. When Flood Elevations are not available for a Flooding source that has a Drainage area equal to or larger than one (1) square mile (640 acres), the applicant is to determine the 10-year and 100-year Flood Elevations at the Site and obtain IDNR approval prior to use for Floodplain compensation calculations. - Equal at least one (1) times the volume of Flood storage lost below the 10-year and 100-year Flood Elevations; - o Be operational prior to placement of fill, Structures, or other materials temporarily or permanently placed in the regulatory Floodplain; - o Be provided in the immediate vicinity of the Flood storage lost, where practical; - O Be provided in such a way to mimic as close as possible the function provided by the lost Floodplain storage. If the Floodplain storage is to be lost outside the active flow Conveyance path, then it must be compensated for outside the flow Conveyance path (e.g., a Flood Conveyance shelf/two-stage Ditch, while improving Conveyance and Erosion, is not an appropriate compensation for Floodplain storage lost in the Floodway Fringe area). - o Be provided in addition to the Site Retention/Detention volume; and - o Drain freely and openly to the Waterway. Compensatory Storage is also required to be provided incrementally such that: - All Floodplain storage/Conveyance Capacity lost within the Floodway shall be compensated for within the Floodway; - All Floodplain storage lost within the Floodway Fringe shall be compensated for within the Floodway Fringe; - o All Floodplain storage lost below the existing 10-year Flood Elevation shall be compensated for below the proposed 10-year Flood Elevation; and - o All Floodplain storage lost above the existing 10-year Flood Elevation shall be compensated for above the proposed 10-year Flood Elevation. Note that Compensatory Storage is required for activities in the regulatory Floodplain. There is no threshold to Compensatory Storage; any volume of fill requires Compensatory Storage be provided. [GMC Sec. 9-156(e)]. However, the Compensatory Storage requirement does not apply to specific activities in the regulatory Floodplain, such as the floodproofing of an existing Building, where the floodproofing measures such as berms or floodwalls are within ten (10) feet of the Building, or crossing improvements, where artificially created storage is lost due to a reduction in head loss. #### Computing Compensatory Storage Computations must show one (1) times compensation for Floodplain storage volume lost for 10-year and 100-year Storm Events. Storage lost between the existing ground and the existing 10-year Flood Elevation must be compensated by providing one (1) times the amount lost and be placed between the existing ground elevation and the proposed 10-year Floodplain elevation. Storage lost between the existing 10-year and the existing 100-year elevation must be compensated by providing one (1) times the amount lost and be placed between the proposed 10-year elevation and proposed 100-year elevation. When preparing a Grading plan, thought should be given to how Compensatory Storage will be quantified. The most common methodology is the use of cross sections and the "average end area method." The following steps should be followed when preparing cross sections: - 1. Prepare a detailed topographic survey tied to North American Vertical Datum of 1988 and the local Survey Control Network Benchmarks. - 2. Locate cross sections parallel to each other and perpendicular to a reference line, oftentimes a property line or fence line. Cross sections used in a hydraulic model are always perpendicular to Flood flows, and not always parallel to each other. Therefore, these are often not suitable for computing Flood fringe Compensatory Storage volumes. - 3. Plot cross sections at a standard engineering scale so as to allow the reviewer to verify areas. Horizontal scale should be a maximum of 1"=50' and vertical scale should be a maximum of 1"=5', or as approved by the City. - 4. Show existing Grades, proposed Grades, existing and proposed 10-year Flood Elevations, existing and proposed 100-year Flood Elevations, normal water level, a reference line, and Floodway limits on the cross sections on the plans. - 5. Locate cross sections no more than 150 feet apart, with a minimum of three cross sections per cut/fill area, or as necessary to accurately quantify cuts and fills. - 6. Locate cross sections to pick up critical features such as berms, Ditches, and existing and proposed Structures. - 7. Each cross section should be numbered or lettered and referenced on the plans. This information is then utilized to compute the areas of cut and fill. A sample Grading plan, a typical cross section, and associated Compensatory Storage calculations for the 10-year Flood are provided on **Figures 11-1**, **Figure 11-2**, and **Table 11-1**, respectively. Volume of Fill between cross sections are calculated by finding the average fill cross sectional area and multiplying it by the distance between the two cross sections. For example, the fill volume between cross sections A and B is calculated as follows: Average Fill Area "A" + Fill Area "B")/2 = $(0 ft^2 + 100 ft^2)/2 = 50 ft^2$ Volume of Fill = (Average Fill Area) × (Distance) = $(50 ft^2)$ × (150 ft) = 7,500 ft^3 Once the total volume of fill placed, for this example, between the 0- and 10-year Flood Elevations is determined, the total required Compensatory Storage can be calculated and compared against the total Compensatory Storage volume provided by the design as shown in the table. For this example: Required Compensatory Storage = $(1) \times (\text{Total Volume of Fill}) = (1) \times (36,250 \, \text{ft}^3)$ = $36,250 \, \text{ft}^3$ PROPERTY & REFERENCE LINE B C D E F G CREEK FLOODPLAIN CUT FILL A B C D E F G F G FIGURE 11-1 Example Compensatory Storage Grading Plan ^{*} Not to Scale & Topography not shown for clarity. FIGURE 11-2 Example Cross Section D-D **TABLE 11-1 Example Compensatory Storage Calculations for 0-10 year event** | Cross
Section | Distance
Between
Sections
(ft.) | Fill Area
(sq. ft.) | Average
Fill Area
(sq. ft.) | Volume of
Fill
(cu. ft.) | Cut Area
(sq. ft.) | Average
Cut (sq.
ft.) | Volume of
Cut
(cu. ft.) | |------------------|--|------------------------|-----------------------------------|--------------------------------|-----------------------|-----------------------------|-------------------------------| | A | | 0 | | | 0 | | | | | 150 | | 50 | 7,500 | | 0 | | | В | | 100 | | | 0 | | | | | 90 | | 125 | 11,250 | | 20 | 1,800 | | C | | 150 | | | 40 | | | | | 100 | | 125 | 12,500 | | 65 | 6,500 | | D | | 100 | | | 90 | | | | | 100 | | 50 | 5,000 | | 100 | 10,000 | | E | | 0 | | | 110 | | | | | 100 | | 0 | 0 | | 120 | 12,000 | | F | | 0 | | | 130 | | | | | 85 | | 0 | 0 | | 85 | 7,225 | | G | | 0 | | | 40 | | | | | Tota | l Fill | | 36,250 | Tota | l Cut | 37,525 | Since the total amount of cut provided $(37,525 \, ft^3)$ as shown in the table) is larger than that required $(36,250 \, ft^3)$, the design meets the Compensatory Storage requirement for the 10-year Flood. An additional table and calculation should be completed for the 100-year Flood Elevation in a similar manner to determine whether the design meets the Compensatory Storage requirement for the 100-year Flood. #### Location of Compensatory Storage Compensatory Storage must be located on-site and adjacent to or opposite the areas filled or occupied by a Structure. [GMC Sec. 9-156(e)]. In those rare instances when Compensatory Storage cannot be located adjacent to or opposite to the areas filled or occupied, engineering computations demonstrating that hydraulically equivalent Compensatory Storage has been provided are required. These computations must show that no increase in Flood flows or Flood depths will result as a result of the location of the proposed Compensatory Storage. Compensatory Storage must be constructed to drain freely and openly to Watercourses. In some rare cases, it may be necessary to install pipes to construct and/or operate a Compensatory Storage basin. This may occur when Site constraints, such as a roadway or
sidewalk, separate the Waterway from the Compensatory Storage area. This is illustrated in the top half of **Figure 11-3**. Another scenario may occur when a Site cannot meet the incremental storage requirements discussed in this document. If incremental storage requirements from the 10-year to 100-year elevations cannot be met, pipes could be installed with a flap gate to prevent the water from entering from the Stream bed at lower elevations. The berm could then be set at the elevation of the 10-year Flood Elevation, thus allowing the storage to only become effective above the 10-year Flood Elevation. This is illustrated in the bottom half of the illustration in **Figure 11-3**. The use of pipes in Compensatory Storage will require approval by the City. If approved, two pipes will be required to reduce the risk of clogging. Pipes must be a minimum of fifteen (15) inches in diameter so as to allow water to enter and exit freely with a minimum head differential. If the Compensatory Storage is proposed to be combined with Detention, it must be demonstrated the Compensatory Storage and Detention do not interfere with one another. PROPOSED DUAL 15° PPES PROPOSED PROPOSED PROPOSED PROPOSED PROPOSED DUAL 15° PPES PROPOSED PR FIGURE 11-3 Example of Compensatory Storage Connection to Stream through Pipe #### Compensatory Storage in the Regulatory Floodway Only fill associated with appropriate uses of the regulatory Floodway will be allowed to fill within the limits of the Floodway. All provisions discussed above relating to Compensatory Storage must be met in addition to the items discussed below. - o Any fill placed within the existing Floodway must be compensated for within the proposed Floodway. - o All Floodway storage lost below the existing 10-year Base Flood Elevation shall be replaced below the proposed 10-year Base Flood Elevation. - All Floodway storage lost between the existing 10-year Flood Elevation and the existing 100-year Flood Elevation shall be replaced between the proposed 10-year and proposed 100-year Flood Elevation. There shall be no reduction in Floodway surface area as a result of a Floodway modification, unless such modification is necessary to reduce flooding at an existing Structure. #### E. REQUIREMENTS ASSOCIATED WITH DAMS AND LEVEES GMC Sec. 9-160(c) requires that all Dams and levees, as well as any improvements to Dams and levees, shall be designed in conformance with these Technical Standards. Dams and levees have the potential for significant, sometimes catastrophic consequences should they fail. In order to minimize the potential for loss of life and public safety, decrease the potential for increased Flood Damage and disaster costs, and safeguard the downstream property rights, the following shall be required by the City for any proposed new or improvements to any existing Dam or levee. These requirements are in addition to what is normally required for other Development subject to the Ordinance and these Technical Standards and/or that required by State or Federal agencies. - i. Design of Dams shall follow the requirements of the latest edition of IDNR-Division of Water "General Guidelines for New Dams and Improvements to Existing Dams in Indiana" as well as principles provided in the latest edition of "Indiana Dam Safety Inspection Manual." - ii. Design of levee/Floodwalls shall follow the FEMA requirements and guidelines provided in 44 CFR Section 65.10 and USACE Engineer Manual 1110-2-193, Design and Construction of Levees. - iii. An Incident and Emergency Action Plan (IEAP), including a detailed Dam breach inundation map, shall be developed in accordance with the template provided in the latest edition of "Indiana Dam Safety Inspection Manual" and submitted to the City. The detailed Dam breach inundation map referenced in this paragraph shall be developed for both "Sunny Day Breach" Scenario (breach during normal loading conditions) and for maximum loading condition with breach assumed to occur as the Spillway system is passing the Spillway Design Flood (SDF) associated with the Dam ("SDF + Breach" Scenario). - iv. Unless the "Sunny Day Breach Inundation Area" is entirely contained within the applicant's property and/ or contained within the existing 100-year Floodplain, a copy of recorded Flood/inundation easement or a recorded written consent for every property within the potential "Sunny Day Breach Inundation Area" shall be submitted to the City. In addition, all the affected property owners whose properties are located within the "SDF + Breach Inundation Area" must be notified of a hearing relevant to the proposed added Flooding risk should such a man-made Structure suffer a catastrophic failure. Notification of the time and place of the hearing shall be made in person or by certified mail at least five (5) to ten (10) days prior to the hearing. Proof of notice to each landowner shall be filed by affidavit with the City prior to the hearing. - v. A copy of a Management and Maintenance Plan for the proposed Dam or levee developed in accordance with the latest edition of "Indiana Dam Safety Inspection Manual" shall be submitted to the City. vi. Unless a Dam is subject to and regulated by the IDNR, following the permitting and construction of the Dam or levee, a copy of a formal periodic inspection report prepared in accordance with the recommendations contained in the latest edition of "Indiana Dam Safety Inspection Manual" shall be submitted to the City along with evidence that the identified maintenance deficiencies have been corrected. The inspection report has to be submitted as it gets completed in accordance with the inspection frequency recommended in the latest edition of "Indiana Dam Safety Inspection Manual." #### F. CONNECTIONS TO STORM SEWER SYSTEM To allow any connections to the Storm Sewer system, provisions for the connections shall be shown in the Drainage calculations for the system. Specific language shall be provided in the protective covenants, on the record plat, or with the parcel deed of record, noting the ability or inability of the system to accommodate any permitted connections, for example, Sump Pumps and Footing Drains. - 1. **Sump Pumps** installed to receive and Discharge Groundwater or other Stormwater shall be connected to the Storm Sewer or connected to a sub-surface Drain provided by the Developer. When Storm Sewers or acceptable Subsurface Drains are not available, the Sump Pump may Discharge to a Watercourse as approved by the City. [GMC Sec. 9-159(c)(1)(i)]. A Sump Pump Discharge pipe, which Outlets onto the surface of ground, shall have its point of Discharge outside the boundaries of any Drainage or utility easement or street Right-of-Way. Discharge pipes directed toward or into an Open Drainage Swale or Ditch shall provide sufficient separation distance so as to provide sufficient area for reasonable absorption of water into the Soil without creating Erosion control problems. **Sump Pumps shall not be connected to street Underdrains.** [GMC Sec. 9-159(c)(1)(iii)]. Sump Pumps installed to receive and Discharge floor Drain flow or other sanitary sewage shall be connected to the sanitary Sewers. [GMC Sec. 9-159(c)(1)(ii)]. - 2. **Footing Drains and perimeter Drains** shall be connected to Manholes or Curb Inlets, with prior approval by the City, or to designated Storm Sewers, discharged into designated storm Drainage Channels, or connected to a sub-surface Drain provided by the Developer. [GMC Sec. 9-159(c)(2)]. - 3. All **roof downspouts**, roof Drains, or roof Drainage piping shall Discharge onto the ground and shall not be directly connected to the storm Drainage system. [GMC Sec. 9-159(c)(3)]. Variation from this requirement may be requested and granted by the City in special circumstances. Discharge pipes directed toward or into an Open Drainage Swale or Ditch shall provide sufficient separation distance so as to provide sufficient area for reasonable absorption of water into the Soil without creating Erosion control problems. No downspouts or roof Drains shall be connected to the sanitary Sewers. [GMC Sec. 9-159(c)(3)]. - 4. **Swimming Pool Drains** shall not be connected to the Storm Sewers unless the water is dechlorinated, as defined in **Appendix A**, prior to being connected to the Storm Sewer. [GMC Sec. 9-159(c)(4)]. - 5. **Garage and Basement floor Drains** shall not be connected to the Storm Sewers. These Drains may be routed to a properly designed wet well or to the sanitary Sewers. [GMC Sec. 9-159(c)(5)]. In addition, none of the above mentioned devices shall be connected to any street Underdrains, unless requested as a variance pursuant to GMC Sec. 9-162 and specifically authorized by the City. # **Chapter Twelve** ### **PERMITTING** #### A. STORMWATER MANAGEMENT PERMIT #### 1. <u>Application and Review</u> All projects located within the Stormwater Management District lie within the City's MS4 area boundary by default. The Project Site Owner shall submit an application for a Stormwater Management Permit approval to the City. A copy of the Application Checklist is provided in **Appendix B**. The application will include an Initial Notice of Intent letter (NOI), proof of public notice, Construction Plan sheets, a Stormwater Drainage technical report, a Stormwater Pollution Prevention Plan(SWPP), and any other necessary support information. Specific information to be included in the application can be found in Section 3 below. Four (4) copies of each application must be submitted to the City. The City may, at its discretion, require one or more copies be submitted to the Johnson County Surveyor, or other entity deemed appropriate by the City. Additionally, a digital copy of the Construction Plans is required in a format accepted by the City. After the City's receipt of the application, the applicant will be notified within fifteen (15) working days following submittal as to whether their application was complete or
insufficient. The applicant will be asked for additional information if the application is insufficient. If the application is complete, it will be reviewed in detail by the City and/or its plan review consultant(s). Once all comments have been received and review completed, the City will approve the project, request modifications, or deny the project. If the applicant does not agree with or accept the review findings and wishes to seek an appeal, the City will place the project on the agenda of the next regularly scheduled meeting of the appropriate City body, provided the agenda for the meeting has not yet been advertised or published. If time for notification does not allow, the project shall be placed on the following regularly scheduled meeting of the appropriate City body. If the project must go through a scheduled meeting, the City will furnish the applicant a complete list of comments and objections to the plans and accompanying data prior to the scheduled meeting. After the scheduled meeting, the City will issue an approval, request modifications to the Construction Plans, or deny the project, and said decision shall represent the final decision of the City with respect to the application. The Project Site Owner must notify the City and IDEM forty-eight (48) hours before beginning construction. Notification shall be in the form of an updated IDEM NOI form. Once a permit has been issued and the updated NOI submitted to the City and IDEM forty-eight (48) hours before the beginning of construction, construction may commence. Once construction starts, the project owner shall monitor construction activities and inspect all Stormwater pollution prevention measures in compliance with the Ordinance and these Technical Standards and the terms and conditions of the approval. Upon completion of construction activities, as-built plans must be submitted to the City. [GMC Sec. 9-161 (i)(1)]. A Notice of Termination (NOT) shall be sent to the City once the construction Site has been stabilized and all temporary Erosion and Sediment Control Measures have been removed. The City, or its representative, shall inspect the construction Site to verify that the requirements for an NOT have been met. Once the applicant receives a "verified" copy of the NOT, they must forward a copy to IDEM. Approvals issues under this scenario will expire five (5) years from the date of issuance. If construction is not completed within five (5) years, the NOI must be resubmitted at least 90 days prior to expiration. #### 2. Documentation Requirements Specific projects or activities may be exempt from all or part of the informational requirements listed below. Exemptions are detailed in GMC Secs. 9-150(e), 9-156(a), 9-157(b), 9-158(b), and 9-159(b). If a project or activity is exempt from any or all requirements of the Ordinance or these Technical Standards, a claim for exemption, as provided in GMC Sec. 9-161(b), should be filed listing the exemption criteria met, in lieu of the information requirements listed below. In addition, this level of detailed information is not required from individual lots, disturbing less than one (1) acre of land, developed within a larger permitted Project Site, as said projects are covered under the Erosion and Sediment Control Permit only. The different elements of a permit submittal include a Draft Notice of Intent (NOI), proof of publication of a public notice, Construction Plans, a Stormwater Drainage technical report, a Stormwater Pollution Prevention Plan for active construction Sites, a post-construction Stormwater pollution prevention plan, and any other necessary supporting information. All plans, reports, calculations, and narratives shall be signed and sealed by a Professional Engineer or a licensed surveyor, registered in the State of Indiana. #### a. Draft Notice of Intent The NOI is a standard form developed by the Indiana Department of Environmental Management, which requires general project information. As part of the City of Greenwood Stormwater Management Permit application package, the NOI form should be completed in full based on data and information available at the time of application. An updated version of this form, accompanied by proof of publication in a newspaper of general circulation in the affected area that notified the public that a Construction Activity is to commence, will need to be resubmitted later after the Stormwater Management Permit approval is granted and at least forty-eight (48) hours prior to commencement of construction. The publication must include the following language: "(Company name, address) is submitting an NOI letter to notify the City of Greenwood, Indiana and the Indiana Department of Environmental Management of our intent to comply with the requirements of the City of Greenwood Stormwater Management Ordinance, as well as the requirements of 327 IAC 15-5 and 327 IAC 15-13, to discharge Stormwater from construction activities for the following project: (name of the construction project, address of the location of the construction project, and Parcel Identification Number). Run-off from the Project Site will discharge to (Stream(s) receiving the discharge(s))." #### **b.** Construction Plans Construction Plan sheets (larger than 11" by 17", but not to exceed 24" by 36" in size) and an accompanying narrative report shall describe and depict the existing and proposed conditions. Note that in order to gain an understanding of and to evaluate the relationship between the proposed improvements for a specific project section/phase and the proposed improvements for an overall multi-section (phased) project, the detailed information requested herein for the first section/phase being permitted must be accompanied by an overall project plan that includes the location, dimensions, and supporting analyses of all Detention/Retention facilities, primary Conveyance facilities, and Outlet conditions. Construction Plans need to include items listed in the application checklist provided in **Appendix B**. #### c. Stormwater Drainage Technical Report A written Stormwater Drainage technical report must contain a discussion of the steps taken in the design of the Stormwater Drainage System. Note that in order to gain an understanding of and to evaluate the relationship between the proposed improvements for a specific project section/phase and the proposed improvements for an overall multi-section (phased) project, the detailed information requested herein for the first section/phase being permitted must be accompanied by an overall project plan that includes the location, dimensions, and supporting analyses of all Detention/Retention facilities, primary Conveyance facilities, and Outlet conditions. The technical report needs to include items listed in the application checklist provided in **Appendix B**. #### d. Stormwater Pollution Prevention Plan for Construction Sites For Sites with total disturbance of one (1) acre or more, a Stormwater Pollution Prevention Plan associated with construction activities must be designed to, at least, meet the requirements of the Ordinance and these Technical Standards. The SWPPP and Construction Plans must include the items listed in the application checklist provided in **Appendix B**. For land disturbances totaling 10,000 square feet or more of land area but less than one (1) acre, appropriate Erosion and Sediment Control Measures that are consistent with these Standards must be designed and shown on the plans. #### e. Post-Construction Storm Water Pollution Prevention Plan For Sites with total land disturbance of 10,000 square feet or more of total land area, a post-construction Stormwater Pollution Prevention Plan must be designed to, at least, meet the requirements of the Ordinance and these Technical Standards. The post-construction storm water pollution prevention plan must include items listed in the application checklist provided in **Appendix B**. #### B. EROSION AND SEDIMENT CONTROL PERMIT For all individual lots disturbing 10,000 square feet or more of total land area, a formal review and issuance of an Erosion and Sediment Control Permit will be required before a building permit can be issued. [GMC Sec. 9-161(d)]. Similarly, for individual lots disturbing less than 10,000 square feet of total land area, developed within a larger permitted project, a formal review and issuance of an Erosion and Sediment Control Permit will be required before a building permit can be issued. [GMC Sec. 9-161(d)]. Erosion and Sediment Control Permit forms for both residential and commercial lots are provided in **Appendix B**. All Stormwater management measures necessary to comply with the Ordinance and these Technical Standards must be implemented in accordance with permitted plan for the larger project. The following information must be submitted to the City, for review and acceptance, by the Individual Lot Operator, whether owning the property or acting as the agent of the property owner, as part of a request for review and issuance of an Erosion and Sediment Control Permit that must be obtained prior to the issuance of a building permit. - 1. A Site layout for the subject lot and all adjacent lots showing Building pad location, dimensions, and elevations, and the Drainage patterns and Swales. - 2. Erosion and Sediment control plan that, at a minimum, includes the following measures: - a. Installation and maintenance of a stable Construction Site Access. - b. Installation and maintenance of appropriate perimeter Erosion and Sediment Control Measures prior to land disturbance. - c. Minimization of Sediment Discharge and tracking from the lot. - d. Clean-up of Sediment that is either tracked or washed onto roads. Bulk clearing of Sediment shall not include flushing the area with water. Cleared Sediment must be redistributed or disposed of in a manner that is in compliance with all applicable statutes and rules. - e. Implementation of concrete
washout practices that securely contain and allow for the proper Disposal of washout waste. - f. Adjacent lots disturbed by an Individual Lot Operator must be repaired and stabilized with temporary or permanent surface stabilization. - g. Self-monitoring program including plan and procedures. - 3. Certification of Compliance stating that the individual lot plan is consistent with the City's Stormwater Management approval for the larger project (if the individual lot is part of a larger permitted project). 4. Name, address, telephone number, and list of qualifications of the Trained Individual in charge of the mandatory Stormwater pollution prevention self-monitoring program for the Project Site. The Individual Lot Operator is responsible for installation and maintenance of all Erosion and Sediment Control Measures until the Site is stabilized. #### C. EASEMENT USE PERMIT An Easement Use Permit is required before the erection of any fences or Structures, the planting of any tree or scrubs, or the introduction of any Rain Garden or bioswale in an existing Drainage Easement or Utility Easement. [GMC Sec. 9-161(e)]. The Easement Use Permit is required on all properties, of any use and any size. Easement Use Permit forms are available from the Department of Community Development Services and/or the Stormwater Department upon request. Persons wishing to erect a fence of Structure in a Drainage or Utility Easement shall file a permit application with the Department of Community Development Services. The Director of Community Development Services and/or his designee shall review the application for an Easement Use Permit and shall make a determination. Said determination shall be appealable to the Board of Public Works and Safety in the same manner as appeal of an enforcement action under GMC Sec. 9-163(m). Persons wishing to plant trees, shrubs, a Rain Garden, or a bioswale in a Drainage Easement shall file a permit application with the Stormwater Department. The Stormwater Superintendent and/or his designee shall review the application for an Easement Use Permit and shall make a determination. Said determination shall be appealable to the Board of Stormwater Management in the same manner as appeal of an enforcement action under GMC Sec. 9-163(m). ### APPENDIX A # ABBREVIATIONS AND DEFINITIONS #### APPENDIX A ### **ABBREVIATIONS AND DEFINITIONS** #### **ABBREVIATIONS** **BFE** Base Flood Elevation **BMP** Best Management Practice **CFS** Cubic Feet Per Second **CLOMR** Conditional Letter of Map Revision (from FEMA) **CLOMR-F** Conditional Letter of Map Revision Based on Fill (from FEMA) **CN** Curve Number COE United States Army Corps of Engineers **CSMP** Comprehensive Stormwater Management Program **CSO** Combined Sewer Overflow **CWA** Clean Water Act **ERM** Elevation Reference Mark **E&SC** Erosion and Sediment Control **EPA** Environmental Protection Agency **ETJ** Extraterritorial Jurisdiction **FBFM** Flood Boundary and Floodway Map **FEMA** Federal Emergency Management Agency **FHBM** Flood Hazard Boundary Map **FIRM** Flood Insurance Rate Map **FIS** Flood Insurance Study **FPG** Flood Protection Grade **FPS** Feet Per Second GIS Geographical Information System **GPS** Global Positioning System **HGL** Hydraulic Grade Line **HHW** Household Hazardous Waste **HUC** Hydrologic Unit Code **IDEM** Indiana Department of Environmental Management **IDNR** Indiana Department of Natural Resources **INDOT** Indiana Department of Transportation. **LAG** Lowest Adjacent Grade **LID** Low Impact Development **LOMA** Letter of Map Amendment (from FEMA) **LOMR** Letter of Map Revision (from FEMA) **LOMR-F** Letter of Map Revision Based on Fill (from FEMA) MCM Minimum Control Measure MS4 Municipal Separate Storm Sewers **NAVD** North American Vertical Datum of 1988 **NFIP** National Flood Insurance Program **NGVD 1929** National Geodetic Vertical Datum of 1929 NRCS USDA-Natural Resources Conservation Service **NPDES** National Pollution Discharge Elimination System **NPS** Non-Point Source **POTW** Publicly Owned Treatment Works **SFHA** Special Flood Hazard Area **SWCD** Soil and Water Conservation District **SWPPP** Stormwater Pollution Prevention Plan **SWQMP** Stormwater Quality Management Plan **Tc** Time of Concentration **TMDL** Total Maximum Daily Load **TN** Total Nitrogen **TP** Total Phosphorus **TSS** Total Suspended Solids **USCS** Unified Soil Classification System **USDA** United States Department of Agriculture **USFWS** United States Fish and Wildlife Service #### **DEFINITIONS** **Acre-Foot** (**AF**). A measure of water volume equal to the inundation of a flat one-acre area to a depth of one foot (43,560 cubic feet). **Administering Authority.** The designated unit(s) of government given the authority to issue permits. Agricultural Land Disturbing Activity. Tillage, planting, cultivation, or harvesting operations for the production of agricultural or nursery vegetative crops. The term also includes pasture renovation and establishment, the construction of agricultural conservation practices, and the installation and maintenance of agricultural Drainage tile. For purposes of this rule, the term does not include land disturbing activities for the construction of agricultural related facilities, such as barns, Buildings to house livestock, roads associated with infrastructure, agricultural waste lagoons and facilities, lakes and ponds, Wetlands, and other infrastructure. **Agricultural Land Use Conservation Practices.** Use of land for the production of animal or plant life, including forestry, pasturing or yarding of livestock, and planting, growing, cultivating, and harvesting crops for human or livestock consumption. Practices that are constructed on agricultural land for the purposes of controlling Soil Erosion and Sedimentation. These practices include Grass Waterways, Sediment basins, terraces, and Grade stabilization Structures. **Amortization Period.** The length of time used to repay a debt or mortgage or to depreciate an initial cost. **Antecedent Runoff Condition.** The index of Runoff potential before a Storm Event. The index, developed by the Soil Conservation Service (SCS), is an attempt to account for the variation of the SCS Runoff Curve Number (CN) from storm to storm. **Backflow Preventer.** Device that allows liquids to flow in only one direction in a pipe. Backflow Preventers are used on Sewer pipes to prevent a reverse flow during Flooding situations. **Backwater.** The rise in water surface elevation caused by some obstruction such as a narrow bridge opening, Buildings, or fill material that limits the area through which the water shall flow. **Base Flood Elevation.** The water surface elevation corresponding to a Flood having a one percent probability of being equaled or exceeded in a given year. **Base Flood.** See "Regulatory Flood." **Base Flow.** Stream Discharge derived from Groundwater sources as differentiated from surface Runoff. Sometimes considered to include flows from regulated lakes or Reservoirs. **Basement.** A Building story that is all or partly underground but having at least one-half of its height below the average level of the adjoining ground. A basement shall not be counted as a story for the purpose of height regulations. **Benchmark.** A marked point of known elevation from which other elevations may be established. **Best Management Practices (BMP).** Design, construction, and maintenance practices and criteria for Stormwater Facilities that minimize the impact of Stormwater Runoff rates and volumes, prevent Erosion, and capture pollutants. The term BMP includes both structural and non-structural facilities and/or methods. **Board of Public Works and Safety.** The Board of Public Works and Safety of the City of Greenwood, Indiana. **Board of Stormwater Management.** The Board of Directors of the Department of Stormwater Management of the City of Greenwood, Indiana. **Buffer Strip.** An existing, variable width strip of vegetated land intended to protect Water Quality and Habitat. **Building.** See "Structure." Capacity (of a Storm Drainage Facility). The maximum flow rate or volume that can be conveyed or stored by a storm Drainage facility without causing Damage to public or private property. **Catch Basin.** A chamber usually built at the curb line of a street for the admission of surface water to a storm Drain or subdrain, having at its base a Sediment sump designed to retain grit and Detritus below the point of overflow. **Centerline of Channel.** The Thalweg of a Channel. **Channel.** A portion of a natural or artificial Watercourse which periodically or continuously contains moving water, or which forms a connecting link between two bodies of water. It has a defined bed and banks which serve to confine the water. **Channel Improvement.** Alteration, maintenance, or reconstruction of the Channel area for the purpose of improving the Channel Capacity or overall Drainage efficiency. The noted "improvement" does <u>not</u> necessarily imply Water Quality or Habitat improvement within the Channel or its adjacent area. Channel Modification. Alteration of a Channel by changing the physical dimensions or materials of its bed or banks. Channel Modification includes damming, rip-rapping or other armoring, widening, deepening, straightening, relocating, lining, and significant removal of bottom or woody vegetation. Channel Modification does not include the clearing of dead or dying vegetation, debris, or trash from the Channel. Channelization is a severe form of Channel Modification typically involving relocation of the existing Channel (e.g., straightening). **Channel Stabilization.** Protecting the sides and bed of a Channel from Erosion by controlling flow velocities and flow directions using jetties, drops, or other Structures and/or by fining the Channel with vegetation, Riprap, concrete, or other suitable lining material. City. The municipal corporation of
Greenwood, Indiana. Class V injection well. A type of well, which typically has a depth greater than its largest surface dimension, emplaces fluids into the subsurface, and does not meet the definitions of Class I through Class IV wells as defined under 40 CFR 146.5. While the term includes the specific examples described in 40 CFR 144.81, septic systems that serve more than one (1) single-family dwelling or provide service for non-domestic waste, dug wells, bored wells, improved sinkholes, French Drains, Infiltration sumps, and Infiltration galleries, it does not include surface impoundments, trenches, or Ditches that are wider than they are deep. **Closed Conduit.** A pipe, tube, or tile used for transmitting water. Combined Sewer Overflow. A system designed and used to receive and transport combined sewage so that during dry periods the wastewater is carried to a treatment facility. During Storm Events, the excess water is Discharged directly into a river, Stream, or lake without treatment. **Compensatory Storage.** An artificial volume of storage within a Floodplain used to balance the loss of natural Flood storage Capacity when artificial fill or substructures are placed within the Floodplain. **Compost.** Organic residue (or a mixture of organic residue and Soil) that has undergone biological decomposition until it has become relatively stable humus. Comprehensive Stormwater Management Program. A comprehensive Stormwater program for effective management of Stormwater quantity and quality throughout the community. **Constructed Wetland.** A manmade shallow pool that creates growing conditions suitable for wetland vegetation and is designed to maximize pollutant removal. **Construction Activity.** Land disturbing activities and land disturbing activities associated with the construction of infrastructure and Structures. This term does not include routine Ditch or road maintenance or minor landscaping projects. **Construction Plan.** A representation of a Project Site and all activities associated with the project. The plan includes the location of the Project Site, buildings and other infrastructure, Grading activities, schedules for implementation and other pertinent information related to the Project Site. A Stormwater Pollution Prevention Plan is a part of the Construction Plan. **Construction Site Access.** A stabilized stone surface at all points of ingress or egress to a Project Site, for the purpose of capturing and detaining Sediment carried by tires of vehicles or other equipment entering or exiting the Project Site. **Contiguous.** Abutting or adjoining as in having a common boundary or edge. **Contour Line.** Line on a map which represents a Contour or points of equal elevation. **Contour.** An imaginary line on the surface of the earth connecting points of the same elevation. **Contractor or Subcontractor.** An individual or company hired by the Project Site or Individual Lot Owner, their agent, or the Individual Lot Operator to perform services on the Project Site. **Control Structure.** A Structure designed to control the rate of flow that passes through the Structure, given a specific upstream and downstream water surface elevation. **Conveyance.** Any structural method for transferring Stormwater between at least two points. The term includes Piping, Ditches, Swales, curbs, gutters, Catch Basins, Channels, storm Drains, and roadways. **Convolution.** The process of translating precipitation excess into a Runoff Hydrograph. **Crawl Space.** Low space below first floor of a house where there has not been excavation deep enough for a basement, usually less than seven (7) feet in depth, but where there is access for pipes, ducts, utilities and similar equipment. **Critical Duration Analysis.** The process of testing different rainfall Durations to find that "critical Duration", which produces the highest peak Runoff or the highest storage volume. **Cross-Section.** A graph or plot of ground elevation across a Stream valley or a portion of it, usually along a line perpendicular to the Stream or direction of flow. **Crown (of Pipe).** The elevation of top of pipe. **Cubic Feet Per Second (CFS).** Used to describe the amount of flow passing a given point in a Stream Channel. One cubic foot per second is equivalent to approximately 7.5 gallons per second. **Culvert.** A Closed Conduit used for the conveyance of surface Drainage water under a roadway, railroad, canal or other impediment. **Curve Number** (CN). The Soil Conservation Service index that represents the combined hydrologic effect of Soil, land use, land cover, hydrologic condition and Antecedent Runoff Condition. **Dam.** A barrier to confine or impound water for storage or diversion, to prevent gully Erosion, or to retain Soil, Sediment, or other debris. **Damage.** Measurable rise in Flood heights on buildings currently subject to Flooding, Flooding of buildings currently not subject to Flooding and increases in volume or velocity to the point where the rate of land lost to Erosion and Scour is substantially increased. **Datum.** Any level surface to which elevations are referred, usually Mean Sea Level. **Dechlorinated Swimming Pool Discharge.** Chlorinated water that has either sat idle for seven (7) days following chlorination prior to Discharge to the MS4 Conveyance, or, by analysis, does not contain detectable concentrations (less than five-hundredths (0.05) milligram per liter) of chlorinated residual. **Department of Community Development Services.** The Department of Community Development Services for the City of Greenwood, Indiana, as established under Greenwood Municipal Code Sec. 2-6(a)(12), including the Planning Division and the Engineering Division. **Depressional Storage Areas.** Non-Riverine depressions in the earth where Stormwater collects. The volumes are often referred to in units of Acre-Feet. **Design Storm.** A selected Storm Event, described in terms of the probability of occurring once within a given number of years, for which Drainage or Flood control improvements are designed and built. **Detention.** Managing Stormwater Runoff by temporary holding and controlled release. **Detention Basin.** A facility constructed or modified to restrict the flow of Stormwater to a prescribed maximum rate and to detain concurrently the excess waters that accumulate behind the Outlet. **Detention Facility.** A facility designed to detain a specified amount of Stormwater Runoff assuming a specified Release Rate. The volumes are often referred to in units of Acre-Feet. **Detention Storage.** The temporary detaining of storage of Stormwater in storage facilities, on rooftops, in streets, parking lots, school yards, parks, Open Spaces or other areas under predetermined and controlled conditions, with the rate of release regulated by appropriately installed devices. **Detention Time.** The theoretical time required to displace the contents of a tank or unit at a given rate of Discharge (volume divided by rate of Discharge). **Detritus.** Dead or decaying organic matter; generally contributed to Stormwater as fallen leaves and sticks or as dead aquatic organisms. **Developer.** Any person financially responsible for Construction Activity, or an owner of property who sells or leases, or offers for sale or lease, any lots in a Subdivision. **Development.** Any man-made change to improved or unimproved real estate including but not limited to: - 1. Construction, reconstruction, or placement of a building or any addition to a building; - 2. Construction of Flood Control Structures such as levees, dikes, dams or Channel Improvements; - 3. Construction or reconstruction of bridges or Culverts; - 4. Installing a manufactured home on a Site, preparing a Site for a manufactured home, or installing a recreational vehicle on a Site for more than hundred eighty (180) days; - 5. Installing utilities, erection of walls, construction of roads, or similar projects; - 6. Mining, dredging, filling, Grading, excavation, or drilling operations; - 7. Storage of materials; or - 8. Any other activity that might change the direction, height, or velocity of Flood or surface waters. "Development" does not include activities such as the maintenance of existing buildings and facilities such as painting, re-roofing, resurfacing roads, or gardening, plowing and similar agricultural practices that do not involve filling, Grading, excavation, or the construction of permanent buildings. **Direct Release.** A method of Stormwater management where Runoff from a part or the entire Development is released directly to the Receiving Stream without providing Detention. **Discharge.** Usually the rate of water flow. A volume of fluid passing a point per unit of time commonly expressed as Cubic Feet Per Second, cubic meters per second, gallons per minute, or millions of gallons per day. Also, the flow of any substance into or from the Stormwater system. **Disposal.** The Discharge, deposit, injection, Spilling, leaking, or placing of any Solid Waste or hazardous waste into or on any land or water so that the Solid Waste or hazardous waste, or any constituent of the waste, may enter the Environment, be emitted into the air, or be Discharged into any waters. **District.** The Stormwater Management District of the City of Greenwood, Indiana. **Ditch.** A man-made, open Watercourse in or into which excess surface water or Groundwater Drained from land, Stormwater Runoff, or Floodwaters flow either continuously or intermittently. **Drain.** A buried slotted or perforated pipe or other conduit (Subsurface Drain) or a Ditch (Open Drain) for carrying off surplus Groundwater or surface water. **Drainage.** The removal of excess surface water or Groundwater from land by means of Ditches or subsurface Drains. Also see Natural Drainage. **Drainage Area.** The area draining into a Stream at a given point. It may be of different sizes for Surface Runoff, subsurface flow and Base Flow,
but generally the Surface Runoff area is considered as the Drainage Area. **Drainage Classification (Soil).** As a natural condition of the Soil, Drainage refers to both the frequency and Duration of periods when the Soil is free of saturation. Soil Drainage conditions are defined as: • *Well-Drained*--Excess water Drains away rapidly, and no mottling occurs within 36 in. of the surface. - *Moderately well Drained*--Water is removed from the Soil somewhat slowly resulting in small but significant periods of wetness, and mottling occurs between 18 and 36 in. - *Poorly Drained*--Water is removed so slowly that it is wet for a large part of the time, and mottling occurs between 0 and 8 in. - Somewhat poorly Drained--Water is removed from the Soil slowly enough to keep it wet for significant periods but not all of the time, and mottling occurs between 8 to 18 in. Very poorly Drained--Water is removed so slowly that the Water Table remains at or near the surface for the greater part of the time; there may also be periods of surface ponding; the Soil has a black to gray surface layer with mottles up to the surface. **Drop Manhole.** Manhole having a vertical drop pipe connecting the Inlet pipe to the Outlet pipe. The vertical drop pipe shall be located immediately outside the Manhole. **Dry Well.** A type of Infiltration practice that allows Stormwater Runoff to flow directly into the ground via a bored or otherwise excavated opening in the ground surface. **Dry-Bottom Detention Basin.** A basin designed to be completely dewatered after having provided its planned Detention of Runoff during a Storm Event. **Duration.** The time period of a rainfall event. **Earth Embankment.** A man-made deposit of Soil, rock, or other material often used to form an impoundment. **Elevation Certificate.** A form published by the Federal Emergency Management Agency that is used to certify the 100-year or Base Flood Elevation and the lowest elevation of usable space to which a building has been constructed. **Elevation Reference Mark (ERM).** Elevation Benchmark tied to the National Geodetic Vertical Datum of 1929 and identified during the preparation of a Flood Insurance Study prepared for the Federal Emergency Management Agency. **Emergency Spillway.** Usually a vegetated earth Channel used to safely convey Flood Discharges around an impoundment Structure. **Energy Dissipater.** A device to reduce the energy of flowing water. **Environment.** The sum total of all the external conditions that may act upon a living organism or community to influence its development or existence. **Erosion.** The wearing away of the land surface by water, wind, ice, gravity, or other geological agents. The following terms are used to describe different types of water Erosion: - Accelerated Erosion--Erosion much more rapid than normal or geologic Erosion, primarily as a result of the activities of man. - *Channel Erosion* --An Erosion process whereby the volume and velocity of flow wears away the bed and/or banks of a well-defined Channel. - *Gully Erosion* --An Erosion process whereby Runoff water accumulates in narrow Channels and, over relatively short periods, removes the Soil to considerable depths, ranging from 1-2 ft. to as much as 75-100 ft. - *Rill Erosion*--An Erosion process in which numerous small Channels only several inches deep are formed; occurs mainly on recently disturbed and exposed Soils (see Rill). - *Splash Erosion*--The spattering of small Soil particles caused by the impact of raindrops on wet Soils; the loosened and spattered particles may or may not be subsequently removed by surface Runoff. - *Sheet Erosion*--The gradual removal of a fairly uniform layer of Soil from the land surface by Runoff water. **Erosion and Sediment Control Measure.** A practice, or a combination of practices, to control Erosion and resulting Sedimentation and/or Off-Site Damages. **Erosion and Sediment Control System.** The use of appropriate Erosion and Sediment Control Measures to minimize Sedimentation by first reducing or eliminating Erosion at the source and then, as necessary, trapping Sediment to prevent it from being Discharged from or within a Project Site. **Erosion Control Plan.** A written description and Site plan of pertinent information concerning Erosion control measures designed to meet the requirements of the Ordinance and these Technical Standards. **Extraterritorial Jurisdiction (ETJ).** Areas located outside the corporate limits of a community over which the community has statutory development authority. **Farm or Field Tile.** A pipe installed in an agricultural area to allow subsurface Drainage of farmland for the purpose of agricultural production. **Filter Strip.** A long, relatively narrow area (usually, 20-75 feet wide) of undisturbed or planted vegetation used near disturbed or Impervious surfaces to filter Stormwater pollutants for the protection of Watercourses, Reservoirs, or adjacent properties. **Final Stabilization.** The establishment of permanent vegetative cover or the application of a permanent nonerosive material to areas where all land disturbing activities have been completed and no additional land disturbing activities are planned under the current permit. **Floatable.** Any waste that will float on the surface of the water. **Flood (or Flood Waters).** A general and temporary condition of partial or complete inundation of normally dry land areas from the overflow, the unusual and rapid accumulation, or the Runoff of surface waters from any source. **Flood Boundary and Floodway Map (FBFM).** A map prepared by the Federal Emergency Management Agency that depicts the FEMA designated Floodways within a community. This map also includes delineation of the 100-year and 500-year Floodplain boundaries and the location of the Flood Insurance Study Cross-Sections. **Flood Crest.** The maximum stage or elevation reached or expected to be reached by the waters of a specific Flood at a given time. **Flood Duration.** The length of time a Stream is above Flood stage or overflowing its banks. **Flood Easement.** Easement granted to identify areas inundated by the 100-year Flood and prohibit or severely restrict Development activities. **Flood Elevation.** The elevation at all locations delineating the maximum level of High Waters for a Flood of given Return Period. **Flood Fighting.** Actions taken immediately before or during a Flood to protect human life and to reduce Flood Damages, such as evacuation, emergency sandbagging and diking. **Flood Forecasting.** The process of predicting the occurrence, magnitude and Duration of an imminent Flood through meteorological and hydrological observations and analysis. **Flood Frequency.** A statistical expression of the average time period between Floods equaling or exceeding a given magnitude. For example, a 100-year Flood has a magnitude expected to be equaled or exceeded on the average of once every hundred years; such a Flood has a one-percent chance of being equaled or exceeded in any given year. Often used interchangeably with "Recurrence Interval." **Flood Hazard Area.** Any Floodplain, Floodway, Floodway Fringe, or any combination thereof which is subject to inundation by the regulatory Flood; or any Flood plain as delineated by Zone X on a Flood Hazard Boundary Map. **Flood Hazard Boundary Map (FHBM).** A map prepared by the Federal Emergency Management Agency that depicts Special Flood Hazard Areas as a Zone A within a community. There are no study text, Base Flood Elevations, or Floodways associated with this map. **Flood Insurance Rate Map (FIRM).** A map prepared by the Federal Emergency Management Agency that depicts Special Flood Hazard Areas within a community. This map also includes the 100-year or Base Flood Elevation at various locations along the Watercourses. More recent versions of the FIMR may also show the FEMA designated Floodway boundaries and the location of the Flood Insurance Study Cross-Sections. **Flood Insurance Study (FIS).** A study prepared by the Federal Emergency Management agency to assist a community participating in the National Flood Insurance Program in its application of the program regulations. The study consists of a text which contains community background information with respect to Flooding, a Floodway data table, summary of Flood Discharges, Flood Profiles, a Flood Insurance Rate Map, and a Flood Boundary and Floodway Map. **Flood Profile.** A graph showing the relationship of water surface elevation to a specific location, the latter generally expressed as distance above the mouth of a Stream of water flowing in a Channel. It is generally drawn to show surface elevation for the crest or a specific magnitude of Flooding, but may be prepared for conditions at any given time or stage. **Flood Protection Grade (FPG).** The elevation of the regulatory or 100-year Flood plus two (2) feet at any given location in the Special Flood Hazard Area or 100-year Floodplain. **Flood Protection Grade.** The elevation of the Lowest Floor of a building, including the Basement, which shall be two feet above the elevation of the regulatory Flood. **Flood Resistant Construction (Flood Proofing).** Additions, changes, or adjustments to Structures or property that are designed to reduce or eliminate the potential for Flood Damage. **Flood Storage Areas.** Depressions, basins, or other areas that normally stand empty or partially empty, but fill with rainfall Runoff during storms to hold the Runoff and reduce downstream flow rates. The volumes are often referred to in units or Acre-Feet. **Floodplain.** The Channel proper and the areas adjoining the Channel which have been or hereafter may be covered by the regulatory or 100-year Flood. Any normally dry land area that is susceptible to being inundated by water from any natural source. The Floodplain includes both the Floodway and the Floodway Fringe Districts. **Floodplain Management.** The operation of a
program of corrective and preventive measures for reducing Flood Damage, including but not limited to Flood control projects, Floodplain land use regulations, Flood Proofing of buildings, and emergency preparedness plans. **Floodplain Regulations.** General term applied to the full range of codes, Ordinances and other regulations relating to the use of land and construction within Floodplain limits. The term encompasses zoning Ordinances, Subdivision regulations, building and housing codes, encroachment laws and open area (space) regulations. **Floodway.** The Channel of a river or Stream and those portions of the Floodplains adjoining the Channel which are reasonably required to efficiently carry and Discharge the Peak Flow of the Regulatory Flood of any river or Stream. **Floodway Fringe.** That portion of the Floodplain lying outside the Floodway, which is inundated by the Regulatory Flood. This is commonly represented by a 0.01 (100-year) frequency event, a 0.002 (500-year) frequency event. **Footing Drain.** A Drain pipe installed around the exterior of a Basement wall foundation to relieve water pressure caused by high Groundwater elevation. **Forebay** (or Sediment Forebay). A small pond placed in front of a larger Retention/Detention Structure such as a wet pond, dry pond, or wetland to intercept and concentrate a majority of Sediment that is coming into the system before it reaches the larger Structure. **Freeboard.** An increment of height added to the Base Flood Elevation to provide a factor of safety for uncertainties in calculations, unknown local conditions, wave actions and unpredictable effects such as those caused by ice or debris jams. (See Flood Protection Grade). **French Drain.** A Drainage trench backfilled with a coarse, water-transmitting material; may contain a perforated pipe. **Gabion.** An Erosion Control Structure consisting of a wire cage or cages filled with rocks. **Garbage.** All putrescible animal solid, vegetable solid, and semi Solid Wastes resulting from the processing, handling, preparation, cooking, serving, or consumption of food or food materials. **Geographical Information System (GIS).** A computer system capable of assembling, storing, manipulation, and displaying geographically referenced information. This technology can be used for resource management and Development planning. **Geotextile Fabric.** A woven or non-woven, water-permeable synthetic material used to trap Sediment particles, prevent the clogging of aggregates with fine grained Soil particles, or as a separator under road aggregate. **Geotextile Liner.** A synthetic, impermeable fabric used to seal impoundments against leaks. **Global Positioning System.** A system that provides specially coded satellite signals that is processed by a receiver, which determines position, velocity, and time. The system is funded and controlled by the United States Department of Defense. **Grade.** (1) The inclination or Slope of a Channel, canal, conduit, etc., or natural ground surface usually expressed in terms of the percentage the vertical rise (or fall) bears to the corresponding horizontal distance. (2) The finished surface of a canal bed, roadbed, top of embankment, or bottom of excavation; any surface prepared to a design elevation for the support of construction, such as paving or the laying of a conduit. (3) To finish the surface of a canal bed, roadbed, top of embankment, or bottom of excavation, or other land area to a smooth, even condition. **Grading.** The cutting and filling of the land surface to a desired Slope or elevation. **Grass.** A member of the botanical family Graminae, characterized by blade-like leaves that originate as a sheath wrapped around the stem. **Grassed Swale.** A type of vegetative practice used to filter Stormwater Runoff via a vegetated, shallow-Channel Conveyance. **Grassed Waterway.** A natural or constructed Waterway, usually broad and shallow, covered with Erosion-resistant Grasses and used to conduct surface water from an area. **Ground Cover (horticulture).** Low-growing, spreading plants useful for low-maintenance landscape areas. **Groundwater.** Accumulation of underground water, natural or artificial. The term does not include manmade underground storage or Conveyance Structures. **Groundwater Recharge.** The Infiltration of water into the earth. It may increase the total amount of water stored underground or only replenish supplies depleted through pumping or natural Discharge.**Habitat.** The Environment in which the life needs of a plant or animal are supplied. Hard Surface. See "Impervious Surface." **High Water.** Maximum designed, permitted, or regulated water level for an impoundment. **Household Hazardous Waste.** Solid Waste generated by households that is ignitable, toxic, reactive, corrosive, or otherwise poses a threat to human health or the Environment. Hot Spot Development. Projects involving land uses considered to be high pollutant producers such as vehicle service and maintenance facilities; vehicle salvage yards and recycling facilities; vehicle and equipment cleaning facilities; fleet storage areas for buses, trucks, etc.; industrial/commercial or any hazardous waste storage areas, or areas that generate such wastes; industrial Sites; restaurants and convenience stores; any activity involving chemical mixing or loading/unloading; outdoor liquid container storage; public works storage areas; commercial container nurseries; and some high traffic retail uses characterized by frequent vehicle turnover.. **Hydraulic Grade Line (HGL).** For Channel flow, the HGL is equal to the water surface whereas for pressure flow it is the piezometric surface. **Hydraulics.** A branch of science that deals with the practical application of the mechanics of water movement. A typical hydraulic study is undertaken to calculate water surface elevations. **Hydrodynamic Loads.** Forces imposed on Structures by Floodwaters due to the impact of moving water on the upstream side of the Structure, drag along its sides, and eddies or negative pressures on its downstream side. **Hydrograph.** For a given point on a Stream, Drainage basin, or a lake, a graph showing either the Discharge, stage (depth), velocity, or volume of water with respect to time. **Hydrologic Unit Code.** A numeric United States Geologic Survey code that corresponds to a Watershed Area. Each area also has a text description associated with the numeric code. **Hydrology.** The science of the behavior of water in the atmosphere, on the surface of the earth, and underground. A typical hydrologic study is undertaken to compute flow rates associated with specified Flood events. **Hydrometeorologic.** Water-related meteorologic data such as rainfall or Runoff. **Hydrostatic Loads.** Those loads or pressures resulting from the static mass of water at any point of Floodwater contact with a Structure. They are equal in all direction and always act perpendicular to the surface on which they are applied. Hydrostatic Loads can act vertically on structural members such as floors, decks and roofs, and can act laterally on upright structural members such as walls, piers, and foundations. **Illicit Discharge.** Any Discharge to a Conveyance that is not composed entirely of Stormwater except naturally occurring Floatables, such as leaves or tree limbs. **Impact Areas.** Areas defined or mapped that are unlikely to be easily Drained because of one or more factors including but not limited to any of the following: Soil type, Topography, land where there is not adequate Outlet, a Floodway or Floodplain, land within 75 feet of each bank of any regulated Drain or within 75 feet from the centerline of any regulated tile Ditch. **Impaired Waters.** Waters that do not or are not expected to meet applicable Water Quality standards, as included on IDEM's CWA List of Impaired Waters. **Impervious Surface Area.** Hard Surface area that collects and concentrates run-off from a property or parcel of land. Impervious Surface Area includes: - 1. Asphalt and concrete roadways, driveways and parking and storage areas; - 2. Compacted gravel roadways, driveways and parking and storage areas; - 3. Rooftops, sidewalks, patio areas and pool decks; - 4. Other areas as deemed necessary and approved by the Board of Stormwater Management. **Individual Building Lot.** A single parcel of land within a multi-parcel Development. **Individual Lot Operator.** A Contractor or Subcontractor working on an individual lot. **Individual Lot Owner.** A person who has financial control of construction activities for an individual lot. **Infiltration.** Passage or movement of water into the Soil. **Infiltration Practices.** Any structural BMP designed to facilitate the Percolation of runoff through the Soil to Groundwater. Examples include Infiltration basins or trenches, Dry Wells, and Porous Pavement.**Infiltration Swales.** A depressed earthen area that is designed to promote Infiltration. **Inlet.** An opening into a storm Drain system for the entrance of surface Stormwater Runoff, more completely described as a storm Drain Inlet. **Intermittent Stream.** A course in which water flows during periods of normal or abnormal rain events. **Invert.** The inside bottom of a Culvert or other conduit. **Junction Chamber.** A converging section of conduit, usually large enough for a person to enter, used to facilitate the flow from one or more conduits into a main conduit. **Land-Disturbing Activity.** Any man-made change of the land surface, including removing vegetative cover that exposes the underlying Soil, excavating, filling, transporting and Grading. **Land Surveyor.** A person licensed under the laws of the State of Indiana to practice land surveying. **Larger Common Plan of Development or Sale.** A plan, undertaken by a single Project Site Owner or a group of Project Site Owners acting in concert, to offer lots for sale or lease; where such land is Contiguous, or
is known, designated, purchased or advertised as a common unit or by a common name, such land shall be presumed as being offered for sale or lease as part of a Larger Common Plan. The term also includes phased or other Construction Activity by a single entity for its own use. **Lateral Storm Sewer.** A Drain that has Inlets connected to it but has no other storm Drain connected. **Life Cycle Cost.** Cost based on the total cost incurred over the system life including research, development, testing, production, construction, operation, and maintenance. Costs are normally determined on present worth or equivalent annual cost basis. **Low Entry Elevation.** The elevation in a Structure where overbank Flooding can enter the Structure. **Lowest Adjacent Grade.** The elevation of the lowest Grade adjacent to a Structure, where the Soil meets the foundation around the outside of the Structure (including structural members such as Basement walkout, patios, decks, porches, support posts or piers, and rim of the window well. **Lowest Floor.** Refers to the lowest of the following: - 1. The top of the Basement floor; - 2. The top of the garage floor, if the garage is the lowest level of the building; - 3. The top of the first floor of buildings constructed on a slab or of buildings elevated on pilings or constructed on a Crawl Space with permanent openings; or - 4. The top of the floor level of any enclosure below an elevated building where the walls of the enclosure provide any resistance to the flow of Flood Waters unless: - a) The walls are designed to automatically equalize the hydrostatic Flood forces on the walls by allowing for the entry and exit of Flood Waters, by providing a minimum of two opening (in addition to doorways and windows) having a total area of one (1) square foot for every two (2) square feet of enclosed area subject to Flooding. The bottom of all such openings shall be no higher than one (1) foot above Grade. - b) Such enclosed space shall be usable only for the parking of vehicles or building access. **Low Impact Development (LID).** LID is a land planning and engineering design approach with a goal of replicating the pre- Development hydrologic regime of urban and developing Watersheds. The primary goal of LID is to mimic a Site's predevelopment Hydrology by reducing the Impervious surface, infiltrating, filtering, storing, evaporating, and detaining Runoff close to its source. **Major Drainage System.** Drainage system carrying Runoff from an area of one or more square miles. **Manhole.** Storm Drain Structure through which a person may enter to gain access to an underground storm Drain or enclosed Structure. Manning Roughness Coefficient or Manning's "n" Value. A dimensionless coefficient ("n") used in the Manning's equation to account for Channel wall frictional losses in steady Uniform Flow. **Measurable Storm Event.** A precipitation event that results in a total measured precipitation accumulation equal to, or greater than, one-half (0.5) inch of rainfall. **Minimum Control Measure.** Minimum measures required by the NPDES Phase II program. The six (6) MCMs are: Public education and outreach; public participation and involvement; Illicit Discharge detection and elimination; Construction Site Runoff control; Post-construction Runoff control; and Pollution prevention and good housekeeping. **Minor Drainage Systems.** Drainage system carrying Runoff from an area of less than one square mile. **Mulch.** A natural or artificial layer of plant residue or other materials covering the land surface which conserves moisture, holds Soil in place, aids in establishing plant cover, and minimizes temperature fluctuations. **Multi-Family.** Any Structure which contains three or more dwelling units. A dwelling unit is any Structure, or part of a Structure, which is constructed to a house a family. Municipal Separate Storm Sewers (MS4). An MS4 meets all the following criteria: - 1. Is a Conveyance or system of Conveyances owned by the state, county, city, town, or other public entity; - 2. Discharges to waters of the United States; - 3. Is designed or used for collecting or conveying Stormwater; - 4. Is not a combined Sewer; and - 5. Is not part of a Publicly Owned Treatment Works (POTW). Municipal, state, federal, or institutional Refueling Area. An operating gasoline or diesel fueling area whose primary function is to provide fuel to either municipal, state, federal, or institutional equipment or vehicles. **Mutual Drain.** A Drain that: (1) Is located on two or more tracts of land that are under different ownership; (2) was established by the mutual consent of all the owners; and (3) was not established under or made subject to any Drainage statute. National Flood Insurance Program (NFIP). The NFIP is a Federal program enabling property owners to purchase Flood insurance. The Federal Emergency Management Agency administers the NFIP in communities throughout the Unites States. The NFIP is based on an agreement between local communities and the Federal government which states that if a community will implement Floodplain Management measures to reduce future Flood risks to new construction and substantially improved Structures in Flood Hazard Areas, the Federal government will make Flood insurance available within the community as a financial protection against Flood losses that do occur. **National Geodetic Vertical Datum of 1929.** The nationwide, Federal Elevation Datum used to reference topographic elevations to a known value. **National Pollution Discharge Elimination System (NPDES).** Program regulating Stormwater Discharges as described in the Federal Register, 40 C.F.R. §§122, 123, and 124. NPDES Permits are issued pursuant to Section 402 of the Clean Water Act by IDEM, as delegated by the EPA. These permits cover aspects of municipal Stormwater Quality. **Natural Drainage.** The flow patterns of Stormwater run-off over the land in its pre-Development state. **Nonagricultural Land Use.** Commercial use of land for the manufacturing and wholesale or retail sale of goods or services; residential or institutional use of land intended primarily to shelter people; highway use of land including lanes, alleys, and streets; and other land uses not included in agricultural land use. **NonPoint Source Pollution.** Pollution that enters a water body from diffuse origins on the Watershed and does not result from discernable, confined, or discrete Conveyances. **Normal Depth.** Depth of flow in an open conduit during Uniform Flow for the given conditions. **North American Vertical Datum of 1988 (NAVD 1988).** The nationwide, Federal Elevation Datum used to reference topographic elevations to a known value. **Nutrient(s).** (1) A substance necessary for the growth and reproduction of organisms. (2) In water, those substances (chiefly nitrates and phosphates) that promote growth of algae and bacteria. **Off-Site.** Everything not located at or within a particular Site. **Off-Site Land Areas.** Those areas that by virtue of existing Topography naturally shed surface water onto or through the developing property. **100-Year Frequency Flood.** See "regulatory Flood." **On-Site.** Located within the controlled or urbanized area where Runoff originates. **Open Drain.** A natural Watercourse or constructed open Channel that conveys Drainage water. **Open Space.** Any land area devoid of any disturbed or Impervious surfaces created by industrial, commercial, residential, agricultural, or other manmade activities. **Ordinance.** The City of Greenwood's Stormwater Management Ordinance, found at Greenwood Municipal Code (1993) Chapter 9, Sections 9-150 to 9-205. **Orifice.** A device which controls the rate of flow from a Detention Basin. **Outfall.** The point, location, or Structure where a pipe or open Drain Discharges to a receiving body of water. **Outfall Scouring.** The deterioration of a Streambed or lakebed from an Outfall Discharge to an extent that the excessive settling of solid material results and suitable aquatic Habitat is diminished. **Outlet.** The point of water Disposal from a Stream, river, lake, tidewater, or artificial Drain. **Overland Flow.** Consists of sheet flow, shallow concentrated flow and Channel flow. **Peak Discharge (or Peak Flow).** The maximum instantaneous flow from a given storm condition at a specific location. **Percolation.** The movement of water through Soil. **Perennial Stream.** A Stream that maintains water in its Channel throughout the year. **Permanent Stabilization.** The establishment, at a uniform density of seventy percent (70%) across the disturbed area, of vegetative cover or permanent non-erosive material that will ensure the resistance of the Soil to Erosion, sliding, or other movement. **Permeability (Soil).** The quality of a Soil that enables water or air to move through it. Usually expressed in inches per hour or inches per day. **Pervious.** A stable surface that allows the movement of water to pass through. **Pesticides.** Chemical compounds used for the control of undesirable plants, animals, or insects. The term includes insecticides, herbicides, algicides, rodenticides, nematicides, fungicides, and growth regulators. **pH.** A numerical measure of hydrogen ion activity, the neutral point being 7.0. All pH values below 7.0 are acid, and all above 7.0 are alkaline. **Phasing of Construction.** Sequential Development of smaller portions of a large Project Site, stabilizing each portion before beginning land disturbance on subsequent portions, to minimize exposure of disturbed land to Erosion. **Phosphorus** (available). Inorganic Phosphorus that is readily available for plant growth. **Piping.** The formation of "pipes" by underground Erosion. Water in the Soil carries the fine Soil particles away, and a series of eroded tubes or tunnels develop. These openings will grow progressively larger and can cause a dam failure. **Planimetric Data.** Horizontal
measurements involving distances or dimensions on a diagram, map, Plat of Survey or Topographic Map. Normally in units of feet. **Plat of Survey.** A scaled diagram showing boundaries of a tract of land or Subdivision. This may constitute a legal description of the land and be used in lieu of a written description. **Point Source.** Any discernible, confined, and discrete Conveyance including but not limited to any pipe, Ditch, Channel, tunnel, conduit, well, discrete fissure, or container from which pollutants are or may be Discharged. **Pollutant of Concern.** Any pollutant that has been documented via analytical data as a cause of impairment in any Waterbody. **Porosity.** The volume of pore space in Soil or rock. **Porous Pavement.** A type of Infiltration practice to improve the quality and reduce the quantity of Stormwater run-off via the use of manmade, Pervious pavement which allows run-off to percolate through the pavement and into underlying Soils **Private Drain.** A Drain that: (1) Is located on land owned by one person or by two or more persons jointly; and (2) was not established under or made subject to any Drainage statute. **Professional Engineer.** A person licensed under the laws of the State of Indiana to practice engineering. **Programmatic Indicator.** Any data collected by an MS4 entity that is used to indicate implementation of one (1) or more Minimum Control Measures. **Project Site.** The entire area on which Construction Activity is to be performed. **Project Site Owner.** The person required to submit a Stormwater Management Permit and/or an Erosion and Sediment Control Permit application and required to comply with the terms of the Ordinance and these Technical Standards, including a Developer or a person who has financial and operational control of construction activities, and project plans and specifications, including the ability to make modifications to those plans and specifications.**Probable Maximum Flood.** The most severe Flood that may be expected from a combination of the most critical meteorological and hydrological conditions that are reasonably possible in the Drainage basin. It is used in designing high-risk Flood protection works and citing of Structures and facilities that shall be subject to almost no risk of Flooding. The probable maximum Flood is usually much larger than the 100-year Flood. **Publically Owned Treatment Works (POTW).** A municipal operation that breaks down and removes contaminants in the wastewater prior to discharging to a Stream through primary and/or secondary treatment systems. **Qualified Professional.** An individual who is trained and experienced in Stormwater treatment techniques and related fields as may be demonstrated by state registration, professional certification, experience, or completion of coursework that enable the individual to make sound, professional judgments regarding Stormwater control or treatment and monitoring, pollutant fate and transport, and Drainage planning. **Radius of Curvature.** Length of radius of a circle used to define a curve. **Rain Garden.** A vegetative practice used to alter Impervious surfaces, such as roofs, into Pervious surfaces for absorption and treatment of rainfall. **Rainfall Intensity.** The rate at which rain is falling at any given instant, usually expressed in inches per hour. **Reach.** Any length of river, Channel, or storm Drain. **Receiving Stream or Receiving Water.** The body of water into which Runoff or effluent is Discharged. The term does not include private Drains, unnamed Conveyances, Retention and Detention Basins, or Constructed Wetlands used as treatment. **Recharge.** Replenishment of Groundwater Reservoirs by Infiltration and transmission from the outcrop of an aquifer or from permeable Soils. **Recurrence Interval**. A statistical expression of the average time between Floods equaling or exceeding a given magnitude. **Redevelopment.** Development occurring on a previously developed Site. **Regional Pond.** A Detention/Retention Basin sized to detain/retain the Runoff from the entire Watershed, On-Site and Off-Site, Tributary to the pond's Outlet. **Regulated Area.** The areas within the City of Greenwood. **Regulated Drain.** A Drain subject to the provisions of the Indiana Drainage Code, Indiana Code § 36-9-27 et. seq. **Regulatory Flood.** The Discharge or elevation associated with the 100-year Flood as calculated by a method and procedure which is acceptable to and approved by the Indiana Department of Natural Resources and the Federal Emergency Management Agency. The "Regulatory Flood" is also known as the "Base Flood". **Regulatory Floodway.** See Floodway. **Release Rate.** The amount of Stormwater released from a Stormwater control facility per unit of time. **Reservoir.** A natural or artificially created pond, lake or other space used for storage, regulation or control of water. May be either permanent or temporary. The term is also used in the hydrologic modeling of storage facilities. **Retail Gasoline Outlet.** An operating gasoline or diesel fueling facility whose primary function is the resale of fuels. The term applies to facilities that create five thousand (5,000) or more square feet of Impervious surfaces, or generate an average daily traffic count of one hundred (100) vehicles per one thousand (1,000) square feet of land area. **Retention.** The storage of Stormwater to prevent it from leaving the Development Site. May be temporary or permanent. **Retention Basin.** A type of storage practice that has no positive Outlet, used to retain Stormwater run-off for an indefinite amount of time. Runoff from this type of basin is removed only by Infiltration through a porous bottom or by evaporation. **Retention Facility.** A facility designed to completely retain a specified amount of Stormwater Runoff without release except by means of evaporation, Infiltration or pumping. The volumes are often referred to in units of Acre-Feet. **Return Period.** The average interval of time within which a given rainfall event will be equaled or exceeded once. A Flood having a Return Period of 100 years has a one percent probability of being equaled or exceeded in any one year. **Revetment.** Facing of stone or other material, either permanent or temporary, placed along the edge of a Stream to stabilize the bank and protect it from the erosive action of the Stream. Also see Revetment Riprap. **Right-of-Way for a County Drain.** The statutory right of way as defined by Indiana Code for a regulated Drain. **Riparian Habitat.** A land area adjacent to a Waterbody that supports animal and plant life associated with that Waterbody. **Riparian Zone.** Of, on, or pertaining to the banks of a Stream, river, or pond. **Riprap.** Broken rock, cobble, or boulders placed on earth surfaces, such as the face of a dam or the bank of a Stream, for protection against the action of water (waves). Revetment Riprap is material graded such that: (1) no individual piece weighs more than 120 lbs. and (2) 90-100% will pass through a 12-inch sieve, 20-60% through a 6-inch sieve, and not more than 10% through a 12-inch sieve. **River Restoration.** Restoring the Channel of a Stream or Ditch to its perceived original, non-obstructed Capacity by means of clearing & snagging, obstruction removal, and inexpensive Streambank protection measures. The term "restoration", as noted, does <u>not</u> necessarily imply restoration or improvement of Water Quality or Habitat within the Channel or its adjacent area. **Riverine.** Relating to, formed by, or resembling a Stream (including creeks and rivers). **Runoff.** That portion of precipitation that flows from a Drainage Area on the land surface, in open Channels, or in Stormwater Conveyance systems. **Runoff Coefficient.** A decimal fraction relating the amount of rain which appears as Runoff and reaches the storm Drain system to the total amount of rain falling. A coefficient of 0.5 implies that 50 percent of the rain falling on a given surface appears as Stormwater Runoff.**Sand.** (1) Soil particles between 0.05 and 2.0 mm in diameter. (2) A Soil textural class inclusive of all Soils that are at least 70% sand and 15% or less clay. **Sanitary Backup.** The condition where a sanitary Sewer reaches Capacity and Surcharges into the lowest area. **Scour.** The clearing and digging action of flowing water. **Sediment.** Solid material (both mineral and organic) that is in suspension, is being transported, or has been moved from its Site of origin by air, water, gravity, or ice and has come to rest on the earth's surface. **Sediment Forebay.** See "Forebay." **Sedimentation.** The process that deposits Soils, debris and other unconsolidated materials either on the ground surfaces or in bodies of water or Watercourses. **Seepage.** The passage of water or other fluid through a porous medium, such as the passage of water through an Earth Embankment or masonry wall. **Sensitive Water.** A Waterbody in need of priority protection or remediation based on its: - 1. Providing Habitat for threatened or endangered species; - 2. Usage as a public water supply intake; - 3. Relevant community value; - 4. Usage for full body contact recreation; - 5. Exceptional use classification as found in 327 IAC 2-1-11(b); or - 6. Outstanding state resource water classification as found in 327 IAC 2-1-2(3) and 327 IAC 2-1.5-19(b). **Settling Basin.** An enlargement in the Channel of a Stream to permit the settling of debris carried in suspension. **Sewer.** May reference storm, sanitary, or combined water conduction facility. **Silt.** (1) Soil fraction consisting of particles between 0.002 and 0.05 mm in diameter. (2) A Soil textural class indicating more than 80% Silt. **Silt Fence.** A fence constructed of wood or steel supports and either natural (e.g. burlap) or synthetic fabric stretched across area of non-concentrated flow during Site Development to trap and retain On-Site
Sediment due to rainfall Runoff. **Siphon.** A Closed Conduit or portion of which lies above the hydraulic Grade line, resulting in a pressure less than atmospheric and requiring a vacuum within the conduit to start flow. A Siphon utilizes atmospheric pressure to effect or increase the flow of water through a conduit. An inverted Siphon is used to carry Stormwater flow under an obstruction such as a sanitary Sewer. **Site.** The entire area included in the legal description of the land on which Land-Disturbing Activity is to be performed. **Slope.** Degree of deviation of a surface from the horizontal, measured as a numerical ratio or percent. Expressed as a ratio, the first number is commonly the horizontal distance (run) and the second is the vertical distance (rise)--e.g., 2:1. However, the preferred method for designation of Slopes is to clearly identify the horizontal (H) and vertical (V) components (length (L) and Width (W) components for horizontal angles). Also note that according to international standards (Metric), the Slopes are presented as the vertical or width component shown on the numerator--e.g., 1V:2H. Slope expressions in this Article follow the common presentation of Slopes--e.g., 2:1 with the metric presentation shown in parentheses--e.g., (1V:2H). Slopes can also be expressed in "percents". Slopes given in percentages are always expressed as (100*V/H) --e.g., a 2:1 (1V:2H) Slope is a 50% Slope. **Soil.** The unconsolidated mineral and organic material on the immediate surface of the earth that serves as a natural medium for the growth of land plants. **Soil and Water Conservation District.** A public organization created under state law as a special-purpose district to develop and carry out a program of Soil, water, and related resource conservation, use, and Development within its boundaries. A Subdivision of state government with a local governing body, established under Indiana Code §§ 14-32-1-1 et. seq. Solid Waste. Any Garbage, refuse, debris, or other discarded material. **Special Flood Hazard Area.** An area that is inundated during the 100-Year Flood. **Spill.** The unexpected, unintended, abnormal, or unapproved dumping, leakage, Drainage, Seepage, Discharge, or other loss of petroleum, hazardous substances, extremely hazardous substances, or objectionable substances. The term does not include releases to Impervious surfaces when the substance does not migrate off the surface or penetrate the surface and enter the Soil. **Spillway.** A Waterway in or about a hydraulic Structure, for the escape of excess water. **Standard Project Flood.** A term used by the U.S. Army Corps of Engineers to designate a Flood that may be expected from the most severe combination of meteorological and hydrological conditions that are considered reasonable characteristics of the geographical area in which the Drainage basin is located, excluding extremely rare combinations. The Peak Flow for a standard project Flood is generally 40 - 60 percent of the probable maximum Flood for the same location. **Stilling Basin.** A basin used to slow water down or dissipate its energy. **Storage Practices.** Any structural BMP intended to store or detain Stormwater and slowly release it to Receiving Waters or Drainage systems. The term includes Detention and Retention Basins. **Storm Drain Signing.** Any marking procedure that identifies a storm Sewer Inlet as Draining directly to a Receiving Waterbody so as to avoid dumping pollutants. These procedures can include painted or cast messages and adhesive decals. **Storm Duration.** The length of time that water may be stored in any Stormwater control facility, computed from the time water first begins to be stored. **Storm Event.** An estimate of the expected amount of precipitation within a given period of time. For example, a 10-yr. frequency, 24-hr. Duration Storm Event is a storm that has a 10% probability of occurring in any one year. Precipitation is measured over a 24-hr. period. **Storm Frequency.** The time interval between major storms of predetermined intensity and volumes of Runoff--e.g., a 5-yr., 10-yr. or 20-yr. storm. **Storm Sewer.** A Sewer designed or intended to convey only Stormwater, surface run-off, street wash waters, and Drainage, and not intended for sanitary sewage and industrial wastes other than unpolluted cooling water. The portion of a Sewer intended to carry Stormwater only, which begins at the grating or opening where water enters the Sewer, through the Sewer and any other conduits to the Outlet Structure where water enters a Channel, natural Watercourse or combined Sewer. Also called a storm Drain. **Stormwater.** Water resulting from rain, melting or melted snow, hail, or sleet. **Stormwater Department.** The Department of Stormwater Management of the City of Greenwood, Indiana, as established under Greenwood Municipal Code Sec. 2-6(a)(15). **Stormwater Drainage System.** All means, natural or man-made, used for conducting Stormwater to, through or from a Drainage Area to any of the following: conduits and appurtenant features, canals, Channels, Ditches, storage facilities, Swales, Streams, Culverts, streets and pumping stations. **Stormwater Facility(ies).** Various Stormwater and Drainage works under the control or ownership of the City, county, state or federal government which may include Inlets, conduits, pipes, pumping stations, Manholes, Structures, Channels, Outlets, Retention or Detention Basins, other structural components and equipment designed to transport, move, or regulate Stormwater. **Stormwater Management District.** All land included in the City's corporate boundaries, as those boundaries may change from time to time, and any additional land in Johnson County, Indiana which is subject to the jurisdiction of the Stormwater Department pursuant to a validly executed interlocal agreement. **Stormwater Management System.** All constructed facilities, including combined Sewers, Structures and natural Watercourses used for collecting and conducting Stormwater to, through and from Drainage Areas to the point of final Outlet, including, but not limited to, any and all of the following: Inlets, conduits and appurtenant features, creeks, Channels, Catch Basins, Ditches, Streams, Culverts, Retention or Detention Basins, and other associated facilities which may include non-structural practices, Erosion control measures and Stormwater Quality BMP's. **Stormwater Pollution Prevention Plan (SWPPP).** A plan developed to minimize the impact of Stormwater pollutants resulting from construction activities. **Stormwater Quality Management Plan.** A comprehensive written document that addresses Stormwater Runoff quality. **Stormwater Quality Measure.** A practice, or a combination of practices, to control or minimize pollutants associated with Stormwater Runoff. **Stormwater Runoff.** The water derived from rains falling within a Tributary basin, flowing over the surface of the ground or collected in Channels or conduits. **Stream.** See Intermittent Stream, Perennial Stream, Receiving Stream. **Stream Gauging.** The quantitative determination of Streamflow using gauges, current meters, Weirs, or other measuring instruments at selected locations (see Gauging station). **Stream Length.** The length of a Stream or Ditch, expressed in miles, from the confluence of the Stream or Ditch with the Receiving Stream to the upstream extremity of the Stream or Ditch, as indicated by the solid or dashed, blue or purple line depicting the Stream or Ditch on the most current edition of the seven and one-half (72) minute topographic quadrangle map published by the United States Geological Survey, measured along the meanders of the Stream or Ditch as depicted on the map.**Streambanks.** The usual boundaries (not the Flood boundaries) of a Stream Channel. Right and left banks are named facing downstream. **Strip Development.** A multi-lot project where building lots front on an existing road. **Structure.** Refers to a Structure that is principally above ground and is enclosed by walls and a roof. The term includes but is not limited to, a gas or liquid storage tank, a manufactured home or a prefabricated building, and recreational vehicles to be installed on a Site for more than 180 days. **Structural Engineer.** A person licensed under the laws of the State of Indiana to engage in the designing or supervising of construction, enlargement or alteration of Structures or any part thereof. **Structural Floodplain Management Measures.** Those physical or engineering measures employed to modify the way Floods behave, (e.g., dams, dikes, levees, Channel enlargements and diversions). **Subarea/Sub-Basin.** Portion of a Watershed divided into homogenous Drainage units which can be modeled for purposes of determining Runoff rates. The Subareas/Sub-Basins have distinct boundaries, as defined by the Topography of the area. **Subdivision.** Any land that is divided or proposed to be divided into lots, whether Contiguous or subject to zoning requirements, for the purpose of sale or lease as part of a Larger Common Plan of Development or sale. **Subsoil.** The B horizons of Soils with distinct profiles. In Soils with weak profile Development, the subsoil can be defined as the Soil below which roots do not normally grow. **Subsurface Drain.** A Pervious backfield trench, usually containing stone and perforated pipe, for intercepting Groundwater or Seepage. **Subwatershed.** A Watershed Subdivision of unspecified size that forms a convenient natural unit. See also Subarea. **Sump Failure.** A failure of the Sump Pump that results in inundation of Crawl Space or Basement. **Sump Pump.** A pump that Discharges Seepage from foundation footing Drains. **Surcharge.** Backup of water in a sanitary or storm Sewer system in excess of the design Capacity of the system. **Surface Runoff.** Precipitation that flows onto the surfaces of roofs, streets, the ground, etc., and is
not absorbed or retained by that surface but collects and runs off. **Suspended Solids.** Solids either floating or suspended in water. **Swale.** An elongated depression in the land surface that is at least seasonally wet, is usually heavily vegetated, and is normally without flowing water. Swales conduct Stormwater into primary Drainage Channels and may provide some Groundwater Recharge. **Tailwater.** The water surface elevation at the downstream side of a hydraulic Structure (i.e. Culvert, bridge, Weir, dam, etc.). **Temporary Stabilization.** The covering of Soil to ensure its resistance to Erosion, sliding, or other movement. The term includes vegetative cover, anchored Mulch, or other non-erosive material applied at a uniform density of seventy percent (70%) across the disturbed area. **Thalweg.** The deepest point (or centerline) of a Channel. **Tile Drain.** Pipe made of perforated plastic, burned clay, concrete, or similar material, laid to a designed Grade and depth, to collect and carry excess water from the Soil. **Tile Drainage.** Land Drainage by means of a series of tile lines laid at a specified depth, Grade, and spacing. **Time of Concentration (tc).** The travel time of a particle of water from the most hydraulically remote point in the contributing area to the point under study. This can be considered the sum of an Overland Flow time and times of travel in street gutters, storm Sewers, Drainage Channels, and all other Drainage ways. **Topographic Map.** Graphical portrayal of the topographic features of a land area, showing both the horizontal distances between the features and their elevations above a given Datum. **Topography.** The representation of a portion of the earth's surface showing natural and man-made features of a given locality such as rivers, Streams, Ditches, lakes, roads, buildings and most importantly, variations in ground elevations for the terrain of the area. **Topsoil.** (1) The dark-colored surface layer, or a horizon, of a Soil; when present it ranges in depth from a fraction of an inch to 2-3 ft. (2) Equivalent to the plow layer of cultivated Soils. (3) Commonly used to refer to the surface layer(s), enriched in organic matter and having textural and structural characteristics favorable for plant growth. **Total Maximum Daily Load.** Method used to establish allowable loadings for specified pollutants in a surface water resource to meet established Water Quality standards. **Toxicity.** The characteristic of being poisonous or harmful to plant or animal life. The relative degree or severity of this characteristic. **TP-40 Rainfall.** Design Storm rainfall depth data for various Durations published by the National Weather Service in their Technical Paper 40 dated 1961. **Trained Individual.** An individual who is trained and experienced in the principles of Stormwater Quality, including Erosion and Sediment Control as may be demonstrated by state registration, professional certification (such as CESSWI and/or CPESC certification), or other documented and applicable experience or coursework as deemed sufficient by the Stormwater Department that enables the individual to make judgments regarding Stormwater control or treatment and monitoring. **Transition Section.** Reaches of the Stream of Floodway where water flows from a narrow Cross-Section to a wide Cross-Section or vice-versa. **Tributary.** Based on the size of the contributing Drainage Area, a smaller Watercourse which flows into a larger Watercourse. **Turbidity.** (1) Cloudiness of a liquid, caused by Suspended Solids. (2) A measure of the Suspended Solids in a liquid. **Underdrain.** A small diameter perforated pipe that allows the bottom of a Detention Basin, Channel, or Swale to Drain. **Unified Soil Classification System.** A system of classifying Soils that is based on their identification according to particle size, gradation, plasticity index, and liquid limit. **Uniform Flow.** A state of steady flow when the mean velocity and Cross-Sectional area remain constant in all sections of a Reach. **Unit Hydrograph.** A unit Hydrograph is the Hydrograph that results from one inch of precipitation excess generated uniformly over the Watershed at a uniform rate during a specified period of time. Urban Drain. A Drain defined as "Urban Drain" in Indiana Drainage Code. **Urbanization.** The Development, change or improvement of any parcel of land consisting of one or more lots for residential, commercial, industrial, institutional, recreational or public utility purposes. **Vegetative Practices.** Any nonstructural or structural BMP that, with optimal design and good Soil conditions, utilizes various forms of vegetation to enhance pollutant removal, maintain and improve natural Site Hydrology, promote healthier Habitats, and increase aesthetic appeal. Examples include Grass Swales, Filter Strips, Buffer Strips, Constructed Wetlands, and Rain Gardens. **Vegetative Stabilization.** Protection of erodible or Sediment producing areas with: permanent seeding (producing long-term vegetative cover), short-term seeding (producing temporary vegetative cover), or sodding (producing areas covered with a turf of perennial sod-forming Grass). **Water Quality.** A term used to describe the chemical, physical, and biological characteristics of water, usually in respect to its suitability for a particular purpose. **Water Resources.** The supply of Groundwater and surface water in a given area. **Water Table.** (1) The free surface of the Groundwater. (2) That surface subject to atmospheric pressure under the ground, generally rising and failing with the season or from other conditions such as water withdrawal. **Waterbody.** Any accumulation of water, surface, or underground, natural or artificial, excluding water features designed and designated as water pollution control facilities **Watercourse.** Any river, Stream, creek, brook, branch, natural or man-made Drainageway in or into which Stormwater Runoff or Floodwaters flow either continuously or intermittently. **Watershed**. The region Drained by or contributing water to a specific point that could be along a Stream, lake or other Stormwater Facilities. Watersheds are often broken down into Subareas for the purpose of hydrologic modeling. **Watershed Area.** All land and water within the confines of a Drainage divide. See also Watershed. **Waterway.** A naturally existing or manmade open conduit or Channel utilized for the conveyance of water. **Weir.** A Channel-spanning Structure for measuring or regulating the flow of water. **Wellhead Protection Area.** Has the meaning set forth at 327 IAC 8-4.1-1(27). Wet-Bottom Detention Basin (Retention Basin). A basin designed to retain a permanent pool of water after having provided its planned Detention of Runoff during a Storm Event. **Wetlands.** Areas that are inundated or saturated by surface water or Groundwater at a frequency and Duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated Soil conditions. ## APPENDIX B ## **FORMS** Application Checklist Construction Site Inspection and Maintenance Log Certification of Completion and Compliance Notice of Termination Inspection Residential Erosion and Sediment Control Permit Request Commercial Erosion and Sediment Control Permit Request Individual Lot Stormwater Pollution Prevention Requirements ## City of Greenwood Application Checklist for Stormwater Management Approval (to be completed by Applicant) | (to be completed by Applicant) | | | |--------------------------------|--------|---| | Project Name: | | | | General Location: | | | | File Number: Date Completed: | | | | | | | | 1. Application Fee | | | | | Checl | k Attached | | | | | | 2. Notice of Intent | | | | | Comp | pleted Notice of Intent State Form #47487 | | 3. Construction Plans | | | | | Projec | ct narrative and supporting documents, including the following information: | | | | An index indicating the location, in the Construction Plans, of all information required by | | | | this subsection. | | | | Description of the nature and purpose of the project. | | | | A copy of a legal boundary survey for the Site, performed in accordance with Rule 12 of Title 865 of the Indiana Administrative Code or any applicable and subsequently adopted rule or regulation for the Subdivision limits, including all drainage easements and Wetlands. | | | | Soil properties, characteristics, limitations, and hazards associated with the Project Site and the measures that will be integrated into the project to overcome or minimize adverse Soil conditions. | | | | General construction sequence of how the Project Site will be built, including phases of construction. | | | | 14-Digit Watershed Hydrologic Unit Code. | | | | A reduced plat or Project Site map showing the lot numbers, lot boundaries, easements, and road layout and names. The reduced map must be legible and submitted on a sheet or sheets no larger than eleven (11) inches by seventeen (17) inches for all phases or sections of the Project Site. | | | | A Topographic Map of the land to be developed and such adjoining land whose Topography may affect the layout or drainage of the Development. The Contour intervals shall be one (1) foot when slopes are less than or equal to two percent (<2%) and shall
be two (2) feet when slopes exceed two percent (>2%). All elevations shall be given in either National Geodetic Vertical Datum of 1929 (NGVD) or North American Vertical Datum of 1988 (NAVD). The horizontal Datum of Topographic Map shall be based on Indiana State Plane Coordinates, NAD83. The map will contain a notation indicating these Datum information. | | | | a] If the Project Site is less than or equal to two (2) acres in total land area, the Topographic Map shall include all Topography of land surrounding the Site to a distance of at least one hundred (100) feet. b] If the Project Site is greater than two (2) acres in total land area, the Topographic | | | | Map shall include all Topography of land surrounding the Site to a distance of at least two hundred (200) feet. | | | | Identification of any other state or federal Water Quality permits that are required for construction activities associated with the owner's Project Site. | | | | Proof of Errors and Omissions Insurance for the registered Professional Engineer or licensed surveyor showing a minimum amount of \$1,000,000 in coverage. | | Vicinity map depicting the Project Site location in relationship to recognizable local landmarks, | | | | | |---|--|--|--|--| | other municipalities, and major roads, such as a USGS topographic quadrangle map, or county | | | | | | or municipal road map. | | | | | | An existing Project Site layout that must include the following information: | | | | | | Location, name, and normal water level of all Wetlands, lakes, ponds, and water courses | | | | | | on, or adjacent to, the Project Site. | | | | | | Location of all existing Structures on the Project Site. | | | | | | One hundred (100) year Floodplains, Floodway Fringes, and Floodways. Please note if | | | | | | none exists. | | | | | | Soil map of the predominant Soil types, as determined by the United States Department | | | | | | of Agriculture (USDA), Natural Resources Conservation Service (NRCS) Soil Survey, or | | | | | | as determined by a Soil scientist. Hydrologic classification for Soils should be shown | | | | | | when hydrologic methods requiring Soils information are used. A Soil legend must be | | | | | | included with the Soil map. | | | | | | Identification and delineation of vegetative cover such as Grass, weeds, brush, and trees | | | | | | on the Project Site. | | | | | | Location of storm, sanitary, combined Sewer, and septic tank systems and Outfalls. | | | | | | Land use of all adjacent properties. | | | | | | Identification and delineation of sensitive areas. | | | | | | Existing Topography at a Contour interval appropriate to indicate drainage patterns. | | | | | | The location of Regulated Drains, farm drains, Inlets and Outfalls, if any of record. | | | | | | Location of all existing cornerstones within the proposed Development and a plan to | | | | | | protect and preserve them. | | | | | | Final Project Site layout, including the following information: | | | | | | Location of all proposed Site improvements, including roads, utilities, lot delineation and | | | | | | identification, proposed Structures, and common areas. | | | | | | One hundred (100) year Floodplains, Floodway Fringes, and Floodways. Please note if | | | | | | none exists. | | | | | | Proposed final Topography, at a Contour interval appropriate to indicate drainage patterns. | | | | | | A Grading plan, including the following information: | | | | | | Delineation of all proposed land disturbing activities, including Off-Site activities that will | | | | | | provide services to the Project Site. | | | | | | Location of all Soil stockpiles and borrow areas. | | | | | | Information regarding any Off-Site borrow, stockpile, or disposal areas that are | | | | | | associated with a Project Site, and under the control of the Project Site Owner. | | | | | | Existing and proposed topographic information. | | | | | | A drainage plan, including the following information: | | | | | | An estimate of the Peak Discharge, based on the ten (10) year Storm Event, of the | | | | | | Project Site for post-construction conditions. | | | | | | The proposed 100-year and 10-year Release Rates determined for the Site, showing the | | | | | | methodology used to calculate them and detailing considerations given to downstream | | | | | | restrictions (if any) that may affect the calculated allowable Release Rates. | | | | | | Calculation showing peak Runoff rate after Development for the 10-year and 100-year | | | | | | Return Period 24-hour storms do not exceed the respective allowable release Runoff | | | | | | rates. | | | | | | Location, size, and dimensions of all existing Streams to be maintained, and new | | | | | | drainage systems such as Culverts, bridges, storm Sewers, conveyance channels, and | | | | | | 100-year overflow paths/ponding areas shown as hatched areas, along with the | | | | | | associated easements. | | | | | | Locations where Stormwater may be directly Discharged into Groundwater, such as | | | | | | abandoned wells or sinkholes. Please note if none exists. | | | | | | Locations of specific points where Stormwater Discharge will leave the Project Site. | | | | | | Name of all Receiving Waters. If the Discharge is to a separate municipal storm Sewer, | | | | | | identify the name of the municipal operator and the ultimate Receiving Water. | | | | | | | Location, size, and dimensions of features such as permanent Retention or Detention facilities, including existing or manmade Wetlands, used for the purpose of Stormwater management. Include existing Retention or Detention facilities that will be maintained, enlarged, or otherwise altered and new ponds or basins to be built and the basis of their design. | |-------|--| | | The estimated depth and amount of storage required by design of the new ponds or basins. | | | One or more typical cross sections of all existing and proposed channels or other Open Drainage facilities carried to a point above the 100-year High Water and showing the elevation of the existing land and the proposed changes, together with the High Water elevations expected from the 100-year storm under the controlled conditions called for by the Ordinance and these Technical Standards, and the relationship of Structures, streets, and other facilities | | 4. St | tormwater Drainage Technical Report | | | A summary report, including the following information: | | | The significant drainage problems associated with the project; | | | The analysis procedure used to evaluate these problems and to propose solutions; | | | Any assumptions or special conditions associated with the use of these procedures, especially the hydrologic or hydraulic methods; | | | The proposed design of the drainage control system; and | | | The results of the analysis of the proposed drainage control system showing that it does solve the project's drainage problems. Any hydrologic or hydraulic calculations or modeling results must be adequately cited and described in the summary description. If | | | modeling results must be adequately cited and described in the summary description. If hydrologic or hydraulic models are used, the input and output files for all necessary runs must be included in the appendices. A map showing any Drainage Area Subdivisions | | | used in the analysis must accompany the report. | | | A Hydrologic/Hydraulic Analysis, consistent with the methodologies and calculation included in the City of Greenwood Stormwater Technical Standards Manual, including the following information: | | | | | |-------|---|--|--|--|--| | | A hydraulic report detailing existing and proposed drainage patterns on the subject Site. The report should include a description of present land use and proposed land use. Any Off-Site drainage entering the Site should be addressed as well. This report should be comprehensive and detail all of the steps the engineer took during the design process. | | | | | | | All hydrologic and hydraulic computations should be included in the submittal. These calculations should include, but are not limited to: Runoff Curve Numbers and Runoff Coefficients, Runoff calculations, stage- Discharge relationships, times-of-concentration and storage volumes. | | | | | | | Copies of all computer runs. These computer runs should include both the input and the outputs. Electronic copies of the computer runs with input files will expedite the review process and is required to be submitted. | | | | | | | A set of exhibits should be included showing the drainage sub-areas and a schematic detailing of how the computer models were set up. | | | | | | | A conclusion which summarizes the hydraulic design and details how this design satisfies the Ordinance and Technical Standards. | | | | | | 5. St | 5. Stormwater Pollution Prevention Plan for Construction Sites | | | | | | | Location, dimensions, detailed specifications, and construction details of all temporary and permanent Stormwater Quality Measures. | | | | | | | Temporary Stabilization plans and sequence of
implementation. | | | | | | | Permanent Stabilization plans and sequence of implementation. | | | | | | | Temporary and Permanent Stabilization plans shall include the following: | | | | | | | Specifications and application rates for Soil amendments and seed mixtures. | | | | | | | The type and application rate for anchored Mulch. | | | | | | | Construction sequence describing the relationship between implementation of Stormwater | |-------|---| | | Quality Measures and stages of construction activities. | | | A typical erosion and Sediment control plan for individual lot Development. | | | Self-monitoring program including plan and procedures. | | | A description of potential pollutant sources associated with the construction activities, which | | | may reasonably be expected to add a significant amount of pollutants to Stormwater | | | Discharges. | | | Material handling and storage associated with Construction Activity shall meet the Spill | | | prevention and Spill response requirements in 327 IAC 2-6.1. | | | Name, address, telephone number, and list of qualifications of the Trained Individual in charge | | | of the mandatory Stormwater pollution prevention self-monitoring program for the Project Site. | | 6 P4 | ost-Construction Stormwater Pollution Prevention Plan | | 6. PC | JSI-Construction Stormwater Poliution Prevention Plan | | | A description of potential pollutant sources from the proposed land use, which may reasonably | | | be expected to add a significant amount of pollutants to Stormwater Discharges. | | | Location, dimensions, detailed specifications, and construction details of all post-construction | | | Stormwater Quality Measures. | | | A description of measures that will be installed to control pollutants in Stormwater Discharges | | | that will occur after construction activities have been completed. Such practices include | | | Infiltration of run-off, flow reduction by use of open vegetated Swales and natural depressions, | | | Buffer Strip and Riparian Zone preservation, filter strip creation, minimization of land | | | disturbance and surface Imperviousness, maximization of Open Space, and Stormwater | | | Retention and Detention ponds. | | | A sequence describing when each post-construction Stormwater Quality Measure will be | | | installed. | | | Stormwater Quality Measures that will remove or minimize pollutants from Stormwater run-off. | | | Stormwater Quality Measures that will be implemented to prevent or minimize adverse impacts | | | to Stream and riparian Habitat. | | | A narrative description of the maintenance guidelines for all post-construction Stormwater | | | Quality Measures to facilitate their proper long term function. This narrative description shall be made available to future parties who will assume responsibility for the operation and | | | maintenance of the post-construction Stormwater Quality Measures. | | | Any other information necessary for the review of the project if LID Approach is being utilized as | | | discussed in Chapter 8 of these Standards Manual. | | | discussed in Chapter of these clandards mandar. | | Date: | | | |---------------------|------------------|--------------| | Project: | | | | Inspected by: | | | | Type of Inspection: | Scheduled Weekly | ☐ Rain Event | #### CONSTRUCTION SITE INSPECTION AND MAINTENANCE LOG (To be Completed by Property Owner or Agent) All Stormwater pollution prevention BMP's shall be inspected and maintained as needed to ensure continued performance of their intended function during construction and shall continue until the entire Site has been stabilized and a Notice of Termination has been issued. An inspection of the Project Site must be completed by the end of the next business day following each Measurable Storm Event. If there are no Measurable Storm Events within a given week, the Site should be monitored at least once in that week. Maintenance and repair shall be conducted in accordance with the accepted Site plans. This log shall be kept as a permanent record and must be made available to the City, in an organized fashion, within forty-eight (48) hours of a request. | Yes | No | N/A | | | |-----|----|-----|--|--| | | | | 1. Is the Rule 5 NOI and other required Site information posted at the entrance? | | | | | | 2. Is a construction entrance installed and functioning properly? | | | | | | 3. Are construction staging & parking areas restricted to areas designated on the | | | | | | plans? | | | | | | 4. Are public and private streets clean of Sediment, debris and mud? | | | | | | 5. Are appropriate practices installed where Stormwater leaves the Site? | | | | | | 6. Are all Stormwater discharge points (Outfalls) adequately stabilized, free of | | | | | | erosion and Sediment transport? | | | | | | 7. Has all Silt Fence been installed properly and being maintained? (entrenched - | | | | | | upright - fabric not torn - terminated to higher ground - properly joined at ends) | | | | | | 8. Are other Sediment control barriers in place and functioning properly? | | | | | | 9. Are appropriate perimeter protections in place and functioning properly? | | | | | | 10. Are check dams, Sediment basins & traps installed according to plan and | | | | | | properly maintained? | | | | | | 11. Is Inlet protection installed properly on all Inlets & being maintained? | | | | | | 12. Have Swales and ditches been stabilized or protected? | | | | | | 13. Has Temporary Stabilization of disturbed ground been addressed? (dormant | | | | | | for 15 days?) | | | | | | 14. Is Permanent Stabilization of disturbed ground progressing on all completed | | | | | | areas? | | | | | | 15. Do water pumping operations have a protected Outlet and discharge clear | | | | | | water? | | | | | | 16. Are all dewatering Structures functioning properly? | | | | | | 17. Is a designated concrete/equipment washout area established, clearly marked | | | | | | and being utilized? | | | | | | 18. Is Solid Waste properly contained & a stable access provided to the storage & | | | | | | pickup area? | | | | | | 19. Are fuel tanks and other hazardous materials safely stored and protected? | | | | | | 20. Is Spill response equipment On-Site and easily accessible? | | | | | | 21. Are temporary Soil stockpiles in approved areas & properly protected? | | | | | | 22. Are diversion Swales and/or waterbars installed to plan & protected? | | If you answered "no" to any of the above questions, describe any corrective action which must be taken to remedy the problem and when the corrective actions are completed. | Corrective Action Log | | | | | | |-----------------------|----------|-------------------|-------------------|----------|-------| | Date | Location | Correction Needed | Date
Completed | Initials | Notes | I certify under penalty of law that this document was completed to the best of my knowledge and belief on the date listed below per my signature. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. | Signature of Inspector: | Date: | |-------------------------|-------| | | | | | | | | | #### **Certification of Completion & Compliance** | | CERTIFICATE OF COMPLE | TION & COMPLIANCE | | |--------------------|---|---------------------------------|-----------------------------| | Name of project | : | | | | Address of prem | nises on which land alteration was accompli | | | | Inspection Date(| (s): Stormwater P | | | | Relative to plans | s prepared by: | on | | | I hereby certify t | that: | | (date) | | 1. | I am familiar with drainage requirements
Stormwater Management Ordinance of th | | ration (as set forth in the | | 2. | I (or a person under my direct supervision examined the drainage permit and its conconsistent with as-built conditions perfor permit; and | ditions, as-built plans, and fi | inal drainage calculations | | 3. | To the best of my knowledge, information and completed in conformity with all sucl | n drainage requirements, exc | cept | | Signature: | | Date: | | | Typed or Printed | d Name: | Phone: () | | | (SEAL) | | | | | Business Addres | SS: | | | | SURVEYOR | ENGINEER (circle one) | | | | Indiana Registra | ation No | | | | Date: | | | |---------------|--|---| | Project: | | | | Inspected by: | | _ | ## NOTICE OF TERMINATION INSPECTION (To be Completed by the City of Greenwood or Agent) All construction Sites shall undergo a final inspection by the City following submittal of a Notice of Termination (NOT) by the project owner to ensure the Site is stabilized and that post construction BMPs have been properly installed. | Yes | No | N/A | | | | |-----|----|-----|---|--|--| | | | | Have all earth disturbing activities been completed? | | | | | | | 2. Are all Soils stabilized with either vegetation or Mulch? | | | | | | | 3. Are all drainageways stabilized with either vegetation, Riprap, or other armament? | | | | | | | Have all temporary Erosion and Sediment Control Measures been removed? | | | | | | | 5. Has all construction waste, trash, and debris been removed from the Site? | | | | | | | 6. Have all permanent Stormwater Quality BMPs been installed in accordance with the plans, specifications, and details? | | | | | | |
7. Are all permanent BMPs free of Sediment accumulation resulting from construction activities? | | | | f you answered "i
emedy the proble | 'no" to any of the above questions, describe any corrective action which must be taken to em and when the corrective actions are to be completed. | |---------------------------------------|---| | - | #### Erosion and Sediment Control Permit Application For Residential Lots City of Greenwood Stormwater Department | Location of Proposed Buil | | | | |----------------------------|-------------------|--|--------------| | Site: | Tow | vnship | | | | Par | cel #: | | | Applicants Name: | Proper | ty Owner: | | | Address: | Addres | SS: | | | Phone: | Phone: | <u> </u> | | | Fax: | Fax: | | | | Contractor/Bldr: | | | | | | | | | | Phone: | | | | | Contact Person: | | | | | | | | | | Type of Residential Lot In | nprovement: | | | | | | | | | List of Qualifications: | | | | | **The Individual l | | ——
nsible for installation and
nt Control Measures until | | | Signature | | Date | | | Approval Date: | Permit# | Fee: | | | Check # | _ | | | | **** NO CTDUOT | NIDEC CHAIL AC EE | NCEC DITT DINCC OD I | DI ANITINICI | **** NO STRUCTURES SUCH AS FENCES, BUILDINGS OR PLANTINGS SUCH AS TREES ARE ALLOWED WITHIN A REGULATED DRAINAGE EASEMENT. ## Required Information for Review of Erosion and Sediment Control Permit Application The following information must be submitted to the City, for review and acceptance, by the Individual Lot Operator, whether owning the property or acting as the agent of the property owner, as part of a request for review and issuance of an Erosion and Sediment Control Permit that must be obtained prior to the issuance of a building permit. - **a.** A Site layout for the subject lot and all adjacent lots showing building pad location, dimensions, and elevations, and the drainage patterns and Swales. - **b.** Erosion and Sediment control plan that, at a minimum, includes the following measures: - i. Installation and maintenance of a stable Construction Site Access. - ii. Installation and maintenance of appropriate perimeter Erosion and Sediment Control Measures prior to land disturbance. - iii. Minimization of Sediment Discharge and tracking from the lot. - iv. Clean-up of Sediment that is either tracked or washed onto roads. Bulk clearing of Sediment shall not include flushing the area with water. Cleared Sediment must be redistributed or disposed of in a manner that is in compliance with all applicable statutes and rules. - v. Implementation of concrete washout practices that securely contain and allow for the proper Disposal of washout waste. - vi. Adjacent lots disturbed by an Individual Lot Operator must be repaired and stabilized with temporary or permanent surface stabilization. - vii. Self-monitoring program including plan and procedures. - c. Certification of Compliance stating that the individual lot plan is consistent with the City's Stormwater Management approval for the larger project (if the individual lot is part of a larger permitted project). - **d.** Name, address, telephone number, and list of qualifications of the Trained Individual in charge of the mandatory Stormwater pollution prevention self-monitoring program for the Project Site. The Individual Lot Operator is responsible for installation and maintenance of all Erosion and Sediment Control Measures until the Site is stabilized. #### Erosion and Sediment Control Permit Application For Commercial Lots City of Greenwood Stormwater Department | Location of Proposed Buil | lding | | | |----------------------------|-------------------|---|------------| | Site: | Town | nship | | | | Parc | cel #: | | | Applicants Name: | Propert | y Owner: | | | Address: | Address | s: | | | Phone: | Phone:_ | | | | Fax: | Fax: | | | | Contractor/Bldr: | | | | | Address: | | | | | Phone: | | | | | Contact Person: | | | | | Type of Residential Lot Ir | mprovement: | | | | Name/Address/Phone | | | am: | | List of Qualifications: | | | | | **The Individual l | | nsible for installation ar
t Control Measures un | | | Signature | | Date | | | Approval Date: | Permit# | Fee: | | | Check # | _ | | | | **** NO STRUCT | TURES SUCH AS FEN | NCES, BUILDINGS OF | R PLANTING | **** NO STRUCTURES SUCH AS FENCES, BUILDINGS OR PLANTINGS SUCH AS TREES ARE ALLOWED WITHIN A REGULATED DRAINAGE EASEMENT ## Required Information for Review of Erosion and Sediment Control Permit Application The following information must be submitted to the City, for review and acceptance, by the Individual Lot Operator, whether owning the property or acting as the agent of the property owner, as part of a request for review and issuance of an Erosion and Sediment Control Permit that must be obtained prior to the issuance of a building permit. - **a.** A Site layout for the subject lot and all adjacent lots showing building pad location, dimensions, and elevations, and the drainage patterns and Swales. - **b.** Erosion and Sediment control plan that, at a minimum, includes the following measures: - i. Installation and maintenance of a stable Construction Site Access. - ii. Installation and maintenance of appropriate perimeter Erosion and Sediment Control Measures prior to land disturbance. - iii. Minimization of Sediment Discharge and tracking from the lot. - iv. Clean-up of Sediment that is either tracked or washed onto roads. Bulk clearing of Sediment shall not include flushing the area with water. Cleared Sediment must be redistributed or disposed of in a manner that is in compliance with all applicable statutes and rules. - v. Implementation of concrete washout practices that securely contain and allow for the proper Disposal of washout waste. - vi. Adjacent lots disturbed by an Individual Lot Operator must be repaired and stabilized with temporary or permanent surface stabilization. - vii. Self-monitoring program including plan and procedures. - c. Certification of Compliance stating that the individual lot plan is consistent with the City's Stormwater Management approval for the larger project (if the individual lot is part of a larger permitted project). - **d.** Name, address, telephone number, and list of qualifications of the Trained Individual in charge of the mandatory Stormwater pollution prevention self-monitoring program for the Project Site. The Individual Lot Operator is responsible for installation and maintenance of all Erosion and Sediment Control Measures until the Site is stabilized. ## Individual Lot Stormwater Pollution Prevention Requirements #### City of Greenwood #### FOR COMPLIANCE WITH CITY OF GREENWOOD STORMWATER CODE THE INDIVIDUAL LOT OWNER OR OPERATOR IS <u>RESPONSIBLE</u> FOR THE INSTALLATION AND MAINTENANCE OF STORMWATER POLLUTION PREVENTION CONTROLS UNTIL THE ENTIRE LOT IS COMPLETE AND 100% STABILIZED. Initial Stormwater controls such as construction entrances, curbside and rear of lot storm Inlet protection (geotextile wrapped under grate is prohibited), and perimeter controls (typically Silt Fence) must be in place BEFORE ANY_LOT_DISTURBANCE begins. All construction materials must be staged off of the street and on the lot behind perimeter controls. Portable toilets must be kept off of the street and should be placed on even ground on the lot behind perimeter controls. All lots must provide and utilize appropriate trash containment for Site waste. Contractors must use appropriate practices for concrete, mortar, and paint washout. These materials must be properly contained and <u>NOT</u> enter the storm drains or other Conveyances. Any off Site tracking of Sediment into the street, or off Site Sedimentation into Swales or drains <u>MUST</u> be cleaned as soon as possible and by no later than the end of the day. Lot frontage should be cleaned and acceptable in appearance at the end of every business day. Areas where operations have impacted adjacent lots or rear yard Swales <u>MUST</u> be repaired to design condition and 100% stabilized. <u>PLEASE NOTE:</u> ANY INSPECTION <u>WILL FAIL</u> IF THE CORRECT STORMWATER POLLUTION PREVENTION CONTROLS ARE NOT IN PLACE AND PROPERLY MAINTAINED. Please direct any questions regarding Stormwater pollution prevention requirements to: Stormwater Department City of Greenwood 300 South Madison Avenue Greenwood, IN 46142 #### Stormwater Pollution Prevention Controls on Individual Lots NOTE: All stormwater pollution prevention controls must be functional and maintained throughout construction. Corrections must be made weekly and before any anticipated rain. The individual lot operator is responsible for cleaning the street along the property frontage at the end of every workday. No portable toilets or materials may be stored in the streets. Any areas where sediment is actively leaving the site must be remedied immediately. #### **Construction Sequence** - 1. Install construction entrance. - a. Use #2 stone. Flare entrance at street so it can handle vehicle turn radius. See Detail. - 2. Install perimeter protection. - a. Protection along the sides of the lot is only necessary if the adjacent lot is built out or if Stormwater Runoff will drain in that direction. - b. Make sure perimeter protections are turned into the lot where they terminate to create a ponding area. See above diagram. - c. Rear of lot perimeter protection should be installed to protect the rear yard Swale. - 3. Install protections on storm Inlets at curbside and at rear of lot. - a. Geo-textile or "fabric" wrapped underneath the grate is
PROHIBITED. - b. Make sure curbside Inlet protection leaves the top 3-4 inches of the storm grate exposed to allow for overflow to enter the storm Inlet, preventing ponding. - 4. Lot disturbance may begin once the controls listed above are in place. - 5. Maintain lot controls at all times and repair as soon as possible when a correction is needed. If Sediment is actively leaving the site due to a failing control such as tracking or an operation such as dewatering, it must be corrected <u>IMMEDIATELY</u>. - 6. Stabilize all exposed Soils with vegetation, Mulch, or stone when construction is complete. Lot is considered stabilized once vegetation has reached 100% coverage and 70% density. - 7. Remove temporary Stormwater pollution prevention controls. - a. These may be removed when exposed Soils have been stabilized with vegetation, sod, or Mulch. - b. Seed alone is not a stabilization measure until it germinates and achieves proper coverage. #### BMP DETAILS #### Silt Fence - 1. Install Silt Fence parallel to the Contour of the land. - 2. Extend ends of Silt Fence upslope 3-4 feet to allow for ponding areas behind the fence. - 3. Excavate trench 8 inches deep and 4 inches wide. - 4. Install with stakes on the down slope side of fence. - 5. Bury 12 inches of fabric in the trench, extending the bottom 4 inches toward the upslope side. - 6. Backfill trench on both sides of fence and compact. - 7. Join Silt Fence sections by wrapping two posts and driving them in together. Do not use any other method of joining. - 8. Inspect weekly and within 24 hrs of a ½" of rain. Silt Fence should be cleaned out when the Sediment has reached 1/3 the height of the exposed fencing. Repair Silt Fence where torn or damaged. Complete repairs before the next anticipated rain and by no later than one week from the date they are noticed. #### Construction Entrance - 1. Install construction entrance from street to face of proposed building or at a 50' minimum length. Use #2 stone at a 6" minimum depth. - 2. A geo-textile is required underneath the entrance to extend its functionality. - 3. Flare out entrance where it meets the street so that vehicle turn radiuses do not travel over disturbed ground. - 4. Perimeter Controls (Silt Fence) should be turned into the lot for a few feet where they meet the construction entrance. - 5. Inspect weekly and within 24 hrs of a ½" of rain. Freshen or replace stone as needed to prevent off site tracking. If offsite tracking is occurring, clean up immediately, and correct the reason why the drive is failing as soon as possible. Complete repairs before the next anticipated rain and by no later than one week from the date they are noted. #### Inlet Protection - 1. Install Inlet protection on all curbside and rear of lot storm Inlets within the flow line of the active lot. - 2. Curbside Inlet protection should be installed so that 3-4 inches of the top of the casting is exposed to allow for overflow, preventing excessive ponding. - 3. Wrapping geo-textile underneath the grate for protection or straw bale barriers are PROHIBITED practices. - 4. Make sure Inlet protection is securely fastened to the storm grate and installed per the manufacturer's recommendations. 5. Inspect weekly and within 24 hrs of a ½" of rain. Sediment accumulation or standing water around the Inlet can indicate the need for maintenance. Clean protection when clogged with Sediment or when it reaches ½ of the storage Capacity or height of the control. Replace protection if torn or worn. Clean Sediment from street around the storm Inlet and place back onto lot behind perimeter controls. Complete repairs before the next anticipated rain and by no later than one week from the day they are noted. # APPENDIX C CONSTRUCTION BMPs #### BMP CN – 101 WHEEL WASH #### DESCRIPTION When a stabilized construction entrance is not preventing Sediment from being tracked onto pavement, a wheel wash may be installed. Wheel washing is generally an effective BMP when installed with careful attention to Topography. For example, a wheel wash can be detrimental if installed at the top of a slope abutting a Right-of-Way where the water from the dripping truck can run unimpeded into the street. Pressure washing combined with an adequately sized and surfaced pad with direct drainage to a large 10-foot x 10-foot sump can be very effective. #### **ADVANTAGES** 1. Wheel washes reduce the amount of Sediment transported onto paved roads by motor vehicles. #### **DESIGN CRITERIA** - 1. Suggested details are shown in Figure CN-101-A. The City may allow other designs. - 2. A minimum of 6 inches of asphalt treated base (ATB) over crushed base material or 8 inches over a good subgrade is recommended to pave the wheel wash. - 3. Use a low clearance truck to test the wheel wash before paving. Either a belly dump or lowboy will work well to test clearance. - 4. Keep the water level from 12 to 14 inches deep to avoid damage to truck hubs and filling the truck tongues with water. - 5. Midpoint spray nozzles are only needed in extremely muddy conditions. - 6. Wheel wash systems should be designed with a small grade change, 6 to 12 inches for a 10-foot-wide pond, to allow Sediment to flow to the low side of pond to help prevent re-suspension of Sediment. - 7. A drainpipe with a 2- to 3-foot riser should be installed on the low side of the pond to allow for easy cleaning and refilling. - 8. Polymers may be used to promote coagulation and flocculation in a closed-loop system. Polyacrylamide (PAM) added to the wheel wash water at a rate of 0.25 0.5 pounds per 1,000 gallons of water increases effectiveness and reduces cleanup time. - 9. If PAM is already being used for dust or erosion control and is being applied by a water truck, the same truck can be used to change the wash water. - 10. The wheel wash should start out the day with fresh water. The wash water should be changed a minimum of once per day. - 11. On large earthwork jobs where more than 10-20 trucks per hour are expected, the wash water will need to be changed more often. - 12. Wheel wash or tire bath wastewater shall be discharged to a separate On-Site treatment system, such as closed-loop recirculation or land application, or to the sanitary Sewer with proper local Sewer utility approval. #### **REFERENCE** City of Tacoma, Surface Water Management Manual, 2003 or later #### Notes: - 1. Asphalt construction entrance 6 in. asphalt treated base (ATB). - 2. 3-inch trash pump with floats on the suction hose. - 3. Midpoint spray nozzles, if needed. - 6-inch sewer pipe with butterfly valves. Bottom one is a drain. Locate top pipe's invert 1 foot above bottom of wheel wash. - 5. 8 foot x 8 foot sump with 5 feet of catch. Build so can be cleaned with trackhoe. - 6. Asphalt curb on the low road side to direct water back to pond. - 7. 6-inch sleeve under road. - 8. Ball valves. - 9. 15 foot. ATB apron to protect ground from splashing water. #### Figure CN-101-A #### BMP CN – 102 DEWATERING STRUCTURE #### DESCRIPTION Water which is pumped from a construction site usually contains a large amount of Sediment. A dewatering Structure is designed to remove the Sediment before water is released Off-Site. This practice includes several types of dewatering Structures which have different applications dependent upon site conditions and types of operation. Other innovative techniques for accomplishing the same purpose are encouraged, but only after specific plans and details are submitted to and approved by the City. #### **DESIGN CRITERIA** - 1. A dewatering Structure must be sized (and operated) to allow pumped water to flow through the filtering device without overtopping the Structure. - 2. Material from any required excavation shall be stored in an area and protected in a manner that will prevent Sediments from eroding and moving Off-Site. - An excavated basin (applicable to "Straw Bale/Silt Fence Pit") may be lined with filter fabric to help reduce Scour and to prevent the inclusion of Soil from within the Structure. - 4. Design criteria more specific to each particular dewatering device can be found in Figures CN-102-A through CN-102-C. - 5. A dewatering Structure may not be needed if there is a well-stabilized, vegetated area onsite to which water may be discharged. The area must be stabilized so that it can filter Sediment and at the same time withstand the velocity of the discharged water without eroding. A minimum filtering length of 75 feet must be available in order for such a method to be feasible. - 6. The filtering devices must be inspected frequently and repaired or replaced once the Sediment build-up prevents the Structure from functioning as designed. - 7. The accumulated Sediment which is removed from a dewatering device must be spread On-Site and stabilized or disposed of at an approved disposal site as per approved plan. #### Portable Sediment Tank (see Figure CN102-A) - The Structure may be constructed with steel drums, sturdy wood or other material suitable for handling the pressure exerted by the volume of water. - Sediment tanks will have a minimum depth of 2 ft. - The Sediment tank shall be located for easy clean-out and disposal of the trapped Sediment and to minimize the interference with construction activities. - The following formula shall be used to determine the storage volume of the Sediment tank: Pump discharge (gallons/min.) \times 16 = cubic feet of storage required - Once the water level nears the top of the tank, the pump must be shut off while the tank drains and additional capacity is made available. - The tank shall be designed to allow for emergency flow over top of the tank. Clean-out of the tank is required once one-third of the original capacity is depleted due to Sediment accumulation. The tank shall be clearly marked showing the clean-out point. #### Filter Box (see Figure CN-102-B) - The box selected should be made of steel, sturdy wood or other materials suitable to handle the
pressure requirements imposed by the volume of water. Normally readily available 55 gallon drums welded top to bottom will suffice in most cases. - Bottom of the box shall be made porous by drilling holes (or some other method). - Coarse aggregate shall be placed over the holes at a minimum depth of 12 inches, metal "hardware" cloth may need to be placed between the aggregate and the holes if holes are drilled larger than the majority of the stone. - As a result of the fast rate of flow of Sediment-laden water through the aggregate, the effluent must be directed over a well-vegetated strip of at least 50 feet after leaving the base of the filter box. - The box shall be sized as follows: Pump discharge (gallons/min.) x 16 = cubic feet of storage required - Once the water level nears the top of the box, the pump must be shut off while the box drains and additional capacity is made available. - The box shall be designed/constructed to allow for emergency flow over the top of this box. - Clean-out of the box is required once one-third of the original capacity is depleted due to Sediment accumulation. The tank shall be clearly marked showing the clean-out point. - If the stone filter does become clogged with Sediment so that it no longer adequately performs its function, the stones must be pulled away from the Inlet, cleaned and replaced. - Using a filter box only allows for minimal settling time for Sediment particles; therefore, it should only be used when site conditions restrict the use of the other methods. #### Straw Bale/Silt Fence Pit (see Figure CN-102-C) - Measure shall consist of straw bales, Silt Fence, a stone Outlet (a combination of Riprap and aggregate) and a wet storage pit oriented as shown in Figure CN-102-C. - The Structure must have a capacity which is dictated by the following formula: Pump discharge (gallons/min.) x 16 = cubic feet of storage required - In calculating the capacity, one should include the volume available from the floor of the excavation to the crest of the stone Weir. - In any case, the excavated area should be a minimum of 3 feet below the base of the perimeter measures (straw bales or Silt Fence). - The perimeter measures must be installed as per the guidelines found in BMP-4, STRAW BALE BARRIER and BMP-5, SILT FENCE. - Once the water level nears the crest of the stone Weir (emergency overflow), the pump must be shut off while the Structure drains down to the elevation of the wet storage. - The wet storage pit may be dewatered only after a minimum of 6 hours of Sediment settling time. This effluent should be pumped across a well vegetated area or through a Silt Fence prior to entering a Watercourse. - Once the wet storage area becomes filled to one-half of the, excavated depth, accumulated Sediment shall be removed and properly disposed of. Stormwater Ordinance Technical Standards | S | Stormwater Ordinance
Fechnical Standards | | | CN-102-3 | | | | August 2008 | |---|---|---|---------------------------|------------------------|----------------------|-------------------------|-----------------|-------------| United State Pollution | ates Army Corps of
Prevention Plans fo | Engineers,
r Construct | Handbook ion Activitie | for the Pres, 1997 o | eparation or
r later | of Storm Wate | r | | | REFERE | NCE | | | | | | | | | · | original condition. | ndo boon | romovou, | ground of | oritodio wi | ii bo rotarriot | . 10 | | | • | Once the device | has been | removed. | around co | ontours wi | Il be returned | l to | Figure CN-102-A Portable Sediment Tank #### ELEVATION VIEW Figure CN-102-B Filter Box #### PLAN VIEW CROSS-SECTION A-A CROSS-SECTION B-B Figure CN-102-C Straw Bale/Silt Fence Pit #### BMP CN – 103 SPILL PREVENTION AND CONTROL #### **DESCRIPTION** These procedures and practices are implemented to prevent and control Spills in a manner that minimizes or prevents the discharge of Spilled material to the drainage system or Watercourses. This best management practice (BMP) applies to all construction projects. Spill control procedures are implemented anytime chemicals and/or hazardous substances are stored. Substances may include, but are not limited to: - Soil stabilizers/binders - Dust Palliatives - Herbicides - Growth inhibitors - Fertilizers - Deicing/anti-icing chemicals - Fuels - Lubricants - Other petroleum distillates To the extent that the work can be accomplished safely, Spills of oil, petroleum products, sanitary and septic wastes, and substances listed under 40 Code of Federal Regulations (CFR) parts 110, 117, and 302 shall be contained and cleaned up immediately. #### **LIMITATIONS** - 1. This BMP only applies to Spills caused by the Contractor. - Procedures and practices presented in this BMP are general. Contractor shall identify appropriate practices for the specific materials used or stored On-Site in advance of their arrival at the site. #### **DESIGN CRITERIA** - 1. To the extent that it doesn't compromise clean up activities, Spills shall be covered and protected from Stormwater Runoff during rainfall. - 2. Spills shall not be buried or washed with water. - 3. Used clean up materials, contaminated materials, and recovered Spill material that is no longer suitable for the intended purpose shall be stored and disposed of in conformance with BMP CN-105: Hazardous Waste Management. - 4. Water used for cleaning and decontamination shall not be allowed to enter storm drains or Watercourses and shall be collected and disposed of in accordance with BMP CN-105: Hazardous Waste Management. - 5. Water overflow or minor water Spillage shall be contained and shall not be allowed to discharge into drainage facilities or Watercourses. - 6. Proper storage, clean-up and Spill reporting instruction for hazardous materials stored or used on the Project Site shall be posted at all times in an open, conspicuous and accessible location. - 7. Waste storage areas shall be kept clean, well organized and equipped with ample clean-up supplies as appropriate for the materials being stored. Perimeter controls, containment Structures, covers and liners shall be repaired or replaced as needed to maintain proper function. - 8. Verify weekly that Spill control and clean up materials are located near material storage, unloading, and use areas. - 9. Update Spill prevention and control plans and stock appropriate clean-up materials whenever changes occur in the types of chemicals used or stored onsite. #### Cleanup and Storage Procedures for Minor Spills - Minor Spills typically involve small quantities of oil, gasoline, paint, etc., which can be controlled by the first responder at the discovery of the Spill. - Use absorbent materials on small Spills rather than hosing down or burying the Spill. - Remove the absorbent materials promptly and dispose of properly. - The practice commonly followed for a minor Spill is: - Contain the spread of the Spill. - Recover Spilled materials. - Clean the contaminated area and/or properly dispose of contaminated materials. #### Cleanup and Storage Procedures for Semi-Significant Spills - Semi-significant Spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities. - Clean up Spills immediately: - Notify the project foreman immediately. The foreman shall notify the City's Emergency Management Agency's Hazardous Materials Response Team. - Contain spread of the Spill. - If the Spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the Spill by encircling with absorbent materials and do not let the Spill spread widely. - If the Spill occurs in dirt areas, immediately contain the Spill by constructing an earthen dike. Dig up and properly dispose of contaminated Soil. - If the Spill occurs during rain, cover Spill with tarps or other material to prevent contaminating Runoff. #### Cleanup and Storage Procedures for Significant/Hazardous Spills For significant or hazardous Spills that cannot be controlled by personnel in the immediate vicinity, notify the local emergency response by dialing 911. In addition to 911, the Contractor will notify the proper City officials. It is the Contractor's responsibility to have all emergency phone numbers at the construction site. - For Spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the Contractor shall notify the National Response Center at (800) 424-8802. - Notification shall first be made by telephone and followed up with a written report. - The services of a Spills Contractor or a Haz-Mat team shall be obtained immediately. Construction personnel shall not attempt to clean up the Spill until the appropriate and qualified personnel have arrived at the job site. #### **REFERENCE** California Department of Transportation, Construction Site BMP Manual, 2000 or later #### BMP CN – 104 SOLID WASTE MANAGEMENT #### **DESCRIPTION** Solid Waste management procedures and practices are designed to minimize or eliminate the discharge of pollutants to the drainage system or to Watercourses as a result of the creation, stockpiling, or removal of construction site wastes. Solid Waste management procedures and practices are implemented on all construction projects that generate Solid Wastes. Solid Wastes include but are not limited to: - Construction
wastes including brick, mortar, timber, steel and metal scraps, sawdust, pipe and electrical cuttings, non-hazardous equipment parts, styrofoam and other materials used to transport and package construction materials. - Landscaping wastes, including vegetative material, plant containers, and packaging materials. - 3. Litter, including food containers, beverage cans, coffee cups, paper bags, plastic wrappers, and smoking materials, including litter generated by the public. #### **LIMITATIONS** 1. Temporary stockpiling of certain construction wastes may not necessitate stringent drainage related controls during the non-rainy season. #### **DESIGN CRITERIA** - 1. Dumpsters of sufficient size and number shall be provided to contain the Solid Waste generated by the project and properly serviced. - 2. Littering on the Project Site shall be prohibited. - 3. To prevent clogging of the storm drainage system, litter and debris removal from drainage grates, trash racks, and ditch lines shall be a priority. - 4. Trash receptacles with lids shall be provided in the Contractor's yard, field trailer areas, and at locations where workers congregate for lunch and break periods. - 5. Construction debris and litter from work areas within the construction limits of the Project Site shall be collected and placed in watertight dumpsters at least weekly regardless of whether the litter was generated by the Contractor, the public, or others. Collected litter and debris shall not be placed in or next to drain Inlets, Stormwater Drainage Systems or Watercourses. - 6. Full dumpsters shall be removed from the Project Site and the contents shall be disposed of, Off-Site, in an appropriate manner.; - 7. Litter stored in collection areas and containers shall be handled and disposed of by trash hauling Contractors. - 8. Construction debris and waste shall be removed from the site every two weeks. - 9. Stormwater run-off shall be prevented from contacting stored Solid Waste through the use of berms, dikes, or other temporary diversion Structures or through the use of measures to elevate waste from site surfaces. - Solid Waste storage areas shall be located at least 50 ft from drainage facilities and Watercourses and shall not be located in areas prone to flooding or ponding. - 11. Except during fair weather, construction and landscaping waste not stored in watertight dumpsters shall be securely covered from wind and rain by covering the waste with tarps, plastic sheeting, or equivalent. - 12. Dumpster washout on the Project Site is not allowed. - 13. Notify trash hauling Contractors that only watertight dumpsters are acceptable for use On-Site. - 14. Plan for additional containers during the demolition phase of construction. - 15. Plan for more frequent pickup during the demolition phase of construction. - 16. Construction waste shall be stored in a designated area. Access to the designated area shall either be well vegetated ground, a concrete or asphalt road or drive, or a gravel construction entrance, to avoid mud tracking by trash hauling Contractors. - 17. Segregate potentially hazardous waste from non-hazardous construction site waste. - 18. Keep the site clean of litter debris. - 19. Make sure that toxic liquid wastes (e.g., used oils, solvents, and paints) and chemicals (e.g., acids, Pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris. - For disposal of hazardous waste, see BMP CN-105: Hazardous Waste Management. Have hazardous waste hauled to an appropriate disposal and/or recycling facility. - 21. Salvage or recycle useful vegetation debris, packaging and/or surplus building materials when practical. For example, trees and shrubs from land clearing can be converted into wood chips, then used as Mulch on graded areas. Wood pallets, cardboard boxes, and construction scraps can also be recycled. - 22. Prohibit littering by employees, Subcontractors, and visitors. - 23. Wherever possible, minimize production of Solid Waste materials. #### REFERENCE California Department of Transportation, Construction Site BMP Manual, 2000 or later #### BMP CN – 105 HAZARDOUS WASTE MANAGEMENT #### **DESCRIPTION** These are procedures and practices to minimize or eliminate the discharge of pollutants from construction site hazardous waste to the storm drain systems or to Watercourses. This best management practice (BMP) applies to all construction projects. Hazardous waste management practices are implemented on construction projects that generate waste from the use of: - Petroleum Products, - Asphalt Products, - Concrete Curing Compounds, - Pesticides, - Acids, - Paints. - Stains, - Solvents. - Wood Preservatives, - Roofing Tar, or - Any materials deemed a hazardous waste in 40 CFR Parts 110, 117, 261, or 302. #### **DESIGN CRITERIA** #### Storage Procedures - 1. Wastes shall be stored in sealed containers constructed of a suitable material and shall be labeled as required by 49 CFR Parts 172,173, 178, and 179. - 2. All hazardous waste shall be stored, transported, and disposed as required in 49 CFR 261-263. - 3. Waste containers shall be stored in temporary containment facilities that shall comply with the following requirements: - Temporary containment facility shall provide for a Spill containment volume able to contain precipitation from a 24-hour, 25 year Storm Event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest tank within its boundary, whichever is greater. - Temporary containment facility shall be Impervious to the materials stored there for a minimum contact time of 72 hours. - Temporary containment facilities shall be maintained free of accumulated rainwater and Spills. In the event of Spills or leaks accumulated rainwater and Spills shall be placed into drums after each rainfall. These liquids shall be handled as a hazardous waste unless testing determines them to be nonhazardous. Non-hazardous liquids shall be sent to an approved disposal site. - Sufficient separation shall be provided between stored containers to allow for Spill cleanup and emergency response access. - Incompatible materials, such as chlorine and ammonia, shall not be stored in the same temporary containment facility. - Throughout the rainy season, temporary containment facilities shall be covered during non-working days, and prior to rain events. Covered facilities may include use of plastic tarps for small facilities or constructed roofs with overhangs. A storage facility having a solid cover and sides is preferred to a temporary tarp. Storage facilities shall be equipped with adequate ventilation. - 4. Drums shall not be overfilled and wastes shall not be mixed. - 5. Unless watertight, containers of dry waste shall be stored on pallets. - 6. Paint brushes and equipment for water and oil based paints shall be cleaned within a contained area and shall not be allowed to contaminate site Soils, Watercourses or drainage systems. Waste paints, thinners, solvents, residues, and sludge that cannot be recycled or reused shall be disposed of as hazardous waste. When thoroughly dry, latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths shall be disposed of as Solid Waste. - 7. Ensure that adequate hazardous waste storage volume is available. - 8. Ensure that hazardous waste collection containers are conveniently located. - Designate hazardous waste storage areas on site away from storm drains or Watercourses and away from moving vehicles and equipment to prevent accidental Spills. - 10. Minimize production or generation of hazardous materials and hazardous waste on the job site. - 11. Use containment berms in fueling and maintenance areas and where the potential for Spills is high. - 12. Segregate potentially hazardous waste from non-hazardous construction site debris. - 13. Keep liquid or semi-liquid hazardous waste in appropriate containers (closed drums or similar) and under cover. - 14. Clearly label all hazardous waste containers with the waste being stored and the date of accumulation. - 15. Place hazardous waste containers in secondary containment. - 16. Do not allow potentially hazardous waste materials to accumulate on the ground. - 17. Do not mix wastes. #### **Disposal Procedures** - 1. Waste shall be removed from the site within 90 days of being generated. - Waste shall be disposed of by a licensed hazardous waste transporter at an authorized and licensed disposal facility or recycling facility utilizing properly completed Uniform Hazardous Waste Manifest forms. - 3. A certified laboratory shall sample waste and classify it to determine the appropriate disposal facility. - 4. Make sure that toxic liquid wastes (e.g., used oils, solvents, and paints) and chemicals (e.g., acids, Pesticides, additives, curing compounds) are not disposed of in dumpsters designated for Solid Waste construction debris. - 5. Properly dispose of rainwater in secondary containment that may have mixed with hazardous waste. - 6. Recycle any useful material such as used oil or water-based paint when practical. #### Maintenance and Inspection - 1. A foreman and/or construction supervisor shall monitor On-Site hazardous waste storage and disposal procedures. - 2. Waste storage areas shall be kept clean, well-organized, and equipped with ample clean-up supplies as appropriate for the materials being stored. Storage areas shall be inspected in conformance with the provisions in the contract documents. August 2008 - 3. Perimeter controls, containment Structures, covers, and liners shall be repaired or replaced as needed to maintain proper function. - 4. Hazardous Spills shall be cleaned up and reported in conformance with the applicable Material Safety Data Sheet (MSDS) and the instructions posted at the Project Site. - 5. The National Response Center, at (800) 424-8802, shall be notified of Spills of Federal reportable quantities in conformance with the
requirements in 40 CFR parts 110, 117, and 302. - 6. Copy of the hazardous waste manifests shall be provided to the owner. #### REFERENCE California Department of Transportation, Construction Site BMP Manual, 2000 or later ### APPENDIX D ## POST-CONSTRUCTION APPENDICES